Light Hole Excitons in Strain-Coupled Bilayer Quantum Dots with Small Fine-Structure Splitting
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. PL Spectra and AFM Images of Bilayer QDs
3.2. Band Structure of Bilayer Single QD
3.3. QDs with Strain-Induced Large FSS
3.4. QDs with LH Excitons in Small FSS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huffaker, D.L.; Park, G.; Zou, Z.; Shchekin, O.B.; Deppe, D.G. 1.3 um room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett. 1998, 73, 2564. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.; Shutts, S.; Elliott, S.; Sobiesierski, A.; Seeds, A.; Ross, I.; et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 2016, 10, 307–311. [Google Scholar] [CrossRef]
- Liu, H.C.; Gao, M.; McCaffrey, J.; Wasilewski, Z.R.; Fafard, S. Quantum dot infrared photodetectors. Appl. Phys. Lett. 2001, 78, 79. [Google Scholar] [CrossRef]
- Shang, X.-J.; Li, S.-L.; Liu, H.-Q.; Su, X.-B.; Hao, H.-M.; Dai, D.-Y.; Li, X.-M.; Li, Y.-Y.; Gao, Y.-F.; Dou, X.-M.; et al. Single- and Twin-Photons Emitted from Fiber-Coupled Quantum Dots in a Distributed Bragg Reflector Cavity. Nanomaterials 2022, 12, 1219. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.-L.; Shang, X.-J.; Su, X.-B.; Hao, H.-M.; Shen, J.-X.; Zhang, Y.; Ni, H.-Q.; Ding, Y.; Niu, Z.-C. Fiber coupled high count-rate single-photon generated from InAs quantum dots. J. Semicond. 2021, 42, 072901. [Google Scholar] [CrossRef]
- Bauer, S.; Wang, D.; Hoppe, N.; Nawrath, C.; Fischer, J.; Witz, N.; Kaschel, M.; Schweikert, C.; Jetter, M.; Portalupi, S.L.; et al. Achieving stable fiber coupling of quantum dot telecom C-band single-photons to an SOI photonic device. Appl. Phys. Lett. 2012, 119, 211101. [Google Scholar] [CrossRef]
- Pooley, M.A.; Ellis, D.J.P.; Patel, R.B.; Bennett, A.J.; Chan, K.H.A.; Farrer, I.; Ritchie, D.A.; Shields, A.J. Controlled-NOT gate operating with single photons. Appl. Phys. Lett. 2012, 100, 211103. [Google Scholar] [CrossRef]
- Papon, C.; Zhou, X.-Y.; Thyrrestrup, H.; Liu, Z.; Stobbe, S.; Schott, R.; Wieck, A.D.; Ludwig, A.; Lodahl, P.; Midolo, L. Nanomechanical single-photon routing. Optica 2019, 6, 524. [Google Scholar] [CrossRef]
- Huo, Y.H.; Rastelli, A.; Schmidt, O.G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl. Phys. Lett. 2013, 102, 152105. [Google Scholar] [CrossRef]
- Chen, Z.-S.; Ma, B.; Shang, X.-J.; He, Y.; Zhang, Y.L.-C.; Ni, H.-Q.; Wang, J.-L.; Niu, Z.-C. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots. Nanoscale Res. Lett. 2016, 11, 382. [Google Scholar] [CrossRef]
- Sapienza, L.; Malein, R.N.; Kuklewicz, C.E.; Kremer, P.E.; Srinivasan, K.; Griffiths, A.; Clarke, E.; Gong, M.; Warburton, R.J.; Gerardot, B.D. Exciton fine-structure splitting of telecom-wavelength single quantum dots: Statistics and external strain tuning. Phys. Rev. B 2013, 88, 155330. [Google Scholar] [CrossRef]
- Sittig, R.; Nawrath, C.; Kolatschek, S.; Bauer, S.; Schaber, R.; Huang, J.; Vijayan, P.; Pruy, P.; Portalupi, S.L.; Jetter, M.; et al. Thin-film InGaAs metamorphic buffer for telecom C-band InAs quantum dots and optical resonators on GaAs platform. Nanophotonics 2022, 11, 1109. [Google Scholar] [CrossRef]
- Shang, X.-J.; Xu, J.-X.; Ma, B.; Chen, Z.-S.; Wei, S.-H.; Li, M.-F.; Zha, G.-W.; Zhang, L.-C.; Yu, Y.; Ni, H.-Q.; et al. Proper In deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots. Chin. Phys. B 2016, 25, 107805. [Google Scholar] [CrossRef]
- Kuroda, T.; Mano, T.; Ha, N.; Nakajima, H.; Kumano, H.; Urbaszek, B.; Jo, M.; Abbarchi, M.; Sakuma, Y.; Sakoda, K.; et al. Symmetric quantum dots as efficient sources of highly entangled photons: Violation of Bell’s inequality without spectral and temporal filtering. Phys. Rev. B 2013, 101, 041306. [Google Scholar] [CrossRef]
- Liang, S.; Zhu, H.L.; Ye, X.L.; Wang, W. Effect of GaAs (100) 2o surface misorientation on the formation and optical properties of MOCVD grown InAs quantum dot. Appl. Surf. Sci. 2006, 252, 8126. [Google Scholar] [CrossRef]
- Shriram, S.R.; Kumar, R.; Panda, D.; Saha, J.; Tongbram, B.; Mantri, M.R.; Gazi, S.A.; Mandal, A.; Chakrabarti, S. Study on Inter Band and Inter Sub-Band Optical Transitions With Varying InAs/InGaAs Sub-Monolayer Quantum Dot Heterostructure Stacks Grown by Molecular Beam Epitaxy. IEEE Trans. Nanotechnol. 2020, 19, 601. [Google Scholar] [CrossRef]
- Shang, X.-J.; Li, S.-L.; Liu, H.-Q.; Ma, B.; Su, X.-B.; Chen, Y.; Shen, J.-X.; Hao, H.-M.; Liu, B.; Dou, X.-M.; et al. Symmetric Excitons in an (001)-Based InAs/GaAs Quantum Dot Near Si Dopant for Photon-Pair Entanglement. Crystal 2021, 11, 1194. [Google Scholar] [CrossRef]
- Shang, X.-J.; Ma, B.; Ni, H.-Q.; Chen, Z.-S.; Li, S.-L.; Chen, Y.; He, X.-W.; Su, X.-L.; Shi, Y.-J.; Niu, Z.-C. C2v and D3h symmetric InAs quantum dots on GaAs (001) substrate: Exciton emission and a defect field influence. AIP Adv. 2020, 10, 085126. [Google Scholar] [CrossRef]
- Fathpour, S.; Mi, Z.; Bhattacharya, P. High-speed quantum dot lasers. J. Phys. D Appl. Phys. 2005, 38, 2103. [Google Scholar] [CrossRef]
- Thompson, S.E.; Armstrong, M.; Auth, C.; Cea, S.; Chau, R.; Glass, G.; Hoffman, T.; Klaus, J.; Ma, Z.; Mcintyre, B.; et al. A Logic Nanotechnology Featuring Strained-Silicon. IEEE Electron Device Lett. 2004, 25, 191. [Google Scholar] [CrossRef]
- William, E.K.; Pancholi, A.; Stoleru, V.G. Quantum dot molecules: A potential pathway towards terahertz devices. Phys. E Low-Dimens. Syst. Nanostruct. 2006, 35, 139. [Google Scholar]
- Belhadj, T.; Amand, T.; Kunold, A.; Simon, C.-M.; Kuroda, T.; Abbarchi, M.; Mano, T.; Sakoda, K.; Kunz, S.; Marie, X.; et al. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Appl. Phys. Lett. 2010, 97, 051111. [Google Scholar] [CrossRef]
- Zhang, J.-X.; Huo, Y.-H.; Rastelli, A.; Zopf, M.; Höfer, B.; Chen, Y.; Ding, F.; Schmidt, O.G. Single photons On-demand from light-hole excitons in strain-engineered quantum dots. Nano. Lett. 2015, 15, 422. [Google Scholar] [CrossRef]
- Beirne, G.J.; Hermannstadter, C.; Wang, L.; Rastelli, A.; Schmidt, O.G.; Michler, P. Quantum Light Emission of Two Lateral Tunnel-Coupled (In, Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field. Phys. Res. Lett. 2006, 96, 137401. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-S.; Ma, B.; Shang, X.-J.; Ni, H.-Q.; Wang, J.-L.; Niu, Z.-C. Bright single-photon source at 1.3 um based on InAs bilayer quantum dot in micropillar. Nanoscale Res. Lett. 2017, 12, 378. [Google Scholar] [CrossRef]
- Li, S.-L.; Shang, X.-J.; Chen, Y.; Su, X.-B.; Hao, H.-M.; Liu, H.-Q.; Zhang, Y.; Ni, H.-Q.; Niu, Z.-C. Wet-etched microlens array for 200 nm spatial isolation of epitaxial single QDs and 80 nm broadband enhancement of their quantum light extraction. Nanomaterials 2021, 11, 1136. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-F.; Yu, Y.; He, J.-F.; Wang, L.-J.; Zhu, Y.; Shang, X.-J.; Ni, H.-Q.; Niu, Z.-C. In situ accurate control of 2D-3D transition parameters for growth of low-density InAs/GaAs self-assembled quantum dots. Nanoscale Res. Lett. 2013, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Alloing, B.; Zinoni, C.; Li, L.H.; Fiore, A.; Patriarche, G. Structural and optical properties of low-density and In-rich InAs/GaAs quantum dots. J. Appl. Phys. 2007, 101, 024918. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Tawara, T.; Kamada, H.; Gotoh, H.; Okamoto, H.; Nakano, H.; Mikami, O. Single-photon emission from single quantum dots in a hybrid pillar microcavity. Appl. Phys. Lett. 2008, 92, 081906. [Google Scholar] [CrossRef]
- Karlsson, K.F.; Oberli, D.A.; Dupertuis, M.; Troncale, V.; Byszewski, M.; Pelucchi, E.; Rudra, A.; Holtz, P.O.; Kapon, E. Spectral signatures of high-symmetry quantum dots and effects of symmetry breaking. New J. Phys. 2015, 17, 103017. [Google Scholar] [CrossRef]
- Kettler, J.; Paul, M.; Olbrich, F.; Zeuner, K.; Jetter, M.; Michler, P. Neutral and charged biexciton-exciton cascade in near-telecom-wavelength quantum dots. Phys. Rev. B 2016, 94, 045303. [Google Scholar] [CrossRef]
- Carmesin, C.; Olbrich, F.; Mehrtens, T.; Florian, M.; Michael, S.; Schreier, S.; Nawrath, C.; Paul, M.; Höschele, J.; Gerken, B.; et al. Structural and optical properties of InAs/(In)GaAs/GaAs quantum dots with single-photon emission in the telecom C-band up to 77 K. Phys. Rev. B 2016, 98, 125407. [Google Scholar] [CrossRef]
- Trotta, R.; Zallo, E.; Ortix, C.; Atkinson, P.; Plumhof, J.D.; van den Brink, J.; Rastelli, A.; Schmidt, O.G. Universal Recovery of the Energy-Level Degeneracy of Bright Excitons in InGaAs Quantum Dots without a Structure Symmetry. Phys. Rev. Lett. 2012, 109, 147401. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, X.; Liu, H.; Su, X.; Li, S.; Hao, H.; Dai, D.; Chen, Z.; Ni, H.; Niu, Z. Light Hole Excitons in Strain-Coupled Bilayer Quantum Dots with Small Fine-Structure Splitting. Crystals 2022, 12, 1116. https://doi.org/10.3390/cryst12081116
Shang X, Liu H, Su X, Li S, Hao H, Dai D, Chen Z, Ni H, Niu Z. Light Hole Excitons in Strain-Coupled Bilayer Quantum Dots with Small Fine-Structure Splitting. Crystals. 2022; 12(8):1116. https://doi.org/10.3390/cryst12081116
Chicago/Turabian StyleShang, Xiangjun, Hanqing Liu, Xiangbin Su, Shulun Li, Huiming Hao, Deyan Dai, Zesheng Chen, Haiqiao Ni, and Zhichuan Niu. 2022. "Light Hole Excitons in Strain-Coupled Bilayer Quantum Dots with Small Fine-Structure Splitting" Crystals 12, no. 8: 1116. https://doi.org/10.3390/cryst12081116
APA StyleShang, X., Liu, H., Su, X., Li, S., Hao, H., Dai, D., Chen, Z., Ni, H., & Niu, Z. (2022). Light Hole Excitons in Strain-Coupled Bilayer Quantum Dots with Small Fine-Structure Splitting. Crystals, 12(8), 1116. https://doi.org/10.3390/cryst12081116