Core–Shell Structures Prepared by Atomic Layer Deposition on GaAs Nanowires
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, K. II-VI Core-Shell Nanowires: Synthesis, Characterizations and Photovoltaic Applications. PhD Thesis, University of New Orleans, New Orleans, LA, USA, 2012. Available online: https://scholarworks.uno.edu/td/1533 (accessed on 13 July 2022).
- Ko, K.Y.; Kang, H.; Kim, J.; Lee, W.; Lee, H.S.; Im, S.; Kang, J.Y.; Myoung, J.-M.; Kim, H.-G.; Kim, S.-H.; et al. High Efficiency N-ZnO/p-Si Core–Shell Nanowire Photodiode Based on Well-Ordered Si Nanowire Array with Smooth Surface. Mater. Sci. Semicond. Process. 2014, 27, 297–302. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.-W.; Mascarenhas, A. Quantum Coaxial Cables” for Solar Energy Harvesting. Nano Lett. 2007, 7, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- Nduwimana, A.; Musin, R.N.; Smith, A.M.; Wang, X.-Q. Spatial Carrier Confinement in Core−Shell and Multishell Nanowire Heterostructures. Nano Lett. 2008, 8, 3341–3344. [Google Scholar] [CrossRef]
- Pan, K.-Y.; Lin, Y.-H.; Lee, P.-S.; Wu, J.-M.; Shih, H.C. Synthesis of SnO2-ZnO Core-Shell Nanowires and Their Optoelectronic Properties. J. Nanomater. 2012, 2012, 279245. [Google Scholar] [CrossRef]
- Shao, D.; Sun, H.; Xin, G.; Lian, J.; Sawyer, S. High Quality ZnO–TiO2 Core–Shell Nanowires for Efficient Ultraviolet Sensing. Appl. Surf. Sci. 2014, 314, 872–876. [Google Scholar] [CrossRef]
- Hayden, O.; Greytak, A.B.; Bell, D.C. Core-Shell Nanowire Light-Emitting Diodes. Adv. Mater. 2005, 17, 701–704. [Google Scholar] [CrossRef]
- Hiruma, K.; Yazawa, M.; Katsuyama, T.; Ogawa, K.; Haraguchi, K.; Koguchi, M.; Kakibayashi, H. Growth and Optical Properties of Nanometer-scale GaAs and InAs Whiskers. J. Appl. Phys. 1995, 77, 447–462. [Google Scholar] [CrossRef]
- Gudiksen, M.S.; Lauhon, L.J.; Wang, J.; Smith, D.C.; Lieber, C.M. Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics. Nature 2002, 415, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-M.; Kang, T.W.; Chung, K.S. Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods. Adv. Mater. 2003, 15, 567–569. [Google Scholar] [CrossRef]
- Grange, R. Nonlinear Optical Enhancement with Plasmonic Core-Shell Nanowires. In Active Plasmonic Nanomaterials; De Sio, L., Ed.; Pan Stanford Publishing Pte. Ltd: New York, NY, USA, 2015; Chapter 10; pp. 323–342. [Google Scholar]
- Ramadurgam, S.; Lin, T.-G.; Yang, C. Tailoring Optical and Plasmon Resonances in Core-Shell and Core-Multishell Nanowires for Visible Range Negative Refraction and Plasmonic Light Harvesting: A Review. J. Mater. Sci. Technol. 2015, 31, 533–541. [Google Scholar] [CrossRef]
- Mulla, R.; Dunnill, C.W. Core–Shell Nanostructures for Better Thermoelectrics. Mater. Adv. 2022, 3, 125–141. [Google Scholar] [CrossRef]
- Musa, M.; Yasui, T.; Nagashima, K.; Horiuchi, M.; Zhu, Z.; Liu, Q.; Shimada, T.; Arima, A.; Yanagida, T.; Baba, Y. ZnO/SiO2 Core/Shell Nanowires for Capturing CpG Rich Single-Stranded DNAs. Anal. Methods 2021, 13, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, H.; Wang, D.; Li, Y.; He, X.; Zhang, H.; Shen, J. ZnO@TiO2 Core/Shell Nanowire Arrays with Different Thickness of TiO2 Shell for Dye-Sensitized Solar Cells. Crystals 2020, 10, 325. [Google Scholar] [CrossRef]
- Kim, H.W.; Yang, J.C.; Na, H.G.; Lee, C. Atomic Layer Deposition Coating of ZnO Shell for GaN–ZnO Core-Sheath Heteronanowires. Appl. Surf. Sci. 2011, 257, 9420–9424. [Google Scholar] [CrossRef]
- Um, H.-D.; Moiz, S.A.; Park, K.-T.; Jung, J.-Y.; Jee, S.-W.; Ahn, C.H.; Kim, D.C.; Cho, H.K.; Kim, D.-W.; Lee, J.-H. Highly Selective Spectral Response with Enhanced Responsivity of N-ZnO/p-Si Radial Heterojunction Nanowire Photodiodes. Appl. Phys. Lett. 2011, 98, 033102. [Google Scholar] [CrossRef]
- Kang, H.; Park, J.; Choi, T.; Jung, H.; Lee, K.H.; Im, S.; Kim, H. n-ZnO:N/p-Si Nanowire Photodiode Prepared by Atomic Layer Deposition. Appl. Phys. Lett. 2012, 100, 041117. [Google Scholar] [CrossRef]
- Shen, X.; Yao, M.; Sun, K.; Zhao, T.; He, Y.; Chi, C.-Y.; Zhou, C.; Dapkus, P.D.; Lewis, N.S.; Hu, S. Defect-Tolerant TiO2 -Coated and Discretized Photoanodes for >600 h of Stable Photoelectrochemical Water Oxidation. ACS Energy Lett. 2021, 6, 193–200. [Google Scholar] [CrossRef]
- Royo, M.; De Luca, M.; Rurali, R.; Zardo, I. A Review on III–V Core–Multishell Nanowires: Growth, Properties, and Applications. J. Phys. D Appl. Phys. 2017, 50, 143001. [Google Scholar] [CrossRef]
- Gao, X.; Fang, D.; Fang, X.; Tang, J.; Fang, F.; Li, J.; Chu, X.; Wang, X.; Wang, X.; Wei, Z. Surface Passivation of GaAs Using Atomic Layer Deposition Grown MgO. Mater. Res. Express 2015, 2, 095902. [Google Scholar] [CrossRef]
- Czaban, J.A.; Thompson, D.A.; LaPierre, R.R. GaAs Core−Shell Nanowires for Photovoltaic Applications. Nano Lett. 2009, 9, 148–154. [Google Scholar] [CrossRef]
- Monaico, E.V.; Morari, V.; Ursaki, V.V.; Nielsch, K.; Tiginyanu, I.M. Core–Shell GaAs-Fe Nanowire Arrays: Fabrication Using Electrochemical Etching and Deposition and Study of Their Magnetic Properties. Nanomaterials 2022, 12, 1506. [Google Scholar] [CrossRef] [PubMed]
- Monaico, E.I.; Monaico, E.V.; Ursaki, V.V.; Honnali, S.; Postolache, V.; Leistner, K.; Nielsch, K.; Tiginyanu, I.M. Electrochemical Nanostructuring of (111) Oriented GaAs Crystals: From Porous Structures to Nanowires. Beilstein J. Nanotechnol. 2020, 11, 966–975. [Google Scholar] [CrossRef]
- Monaico, E.; Tiginyanu, I.; Ursaki, V. Porous Semiconductor Compounds. Semicond. Sci. Technol. 2020, 35, 103001. [Google Scholar] [CrossRef]
- Tiginyanu, I.; Monaico, E.I.; Monaico, E.V. Ordered Arrays of Metal Nanotubes in Semiconductor Envelope. Electrochem. Commun. 2008, 10, 731–734. [Google Scholar] [CrossRef]
- Austin, A.J.; Echeverria, E.; Wagle, P.; Mainali, P.; Meyers, D.; Gupta, A.K.; Sachan, R.; Prassana, S.; McIlroy, D.N. High-Temperature Atomic Layer Deposition of GaN on 1D Nanostructures. Nanomaterials 2020, 10, 2434. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, J. Atomic Layer Deposition in Energy Conversion Applications; Bachmann, J., Ed.; Wiley-VCH Verlag GmbH & Co KGaA: Weinheim, Germany, 2017; p. 312. [Google Scholar]
- Hoang, T.B.; Titova, L.V.; Jackson, H.E.; Smith, L.M.; Yarrison-Rice, J.M.; Kim, Y.; Joyce, H.J.; Jagadish, C. Imaging and Optical Properties of Single Core-Shell GaAs-AlGaAs Nanowires. In Proceedings of the 2006 Sixth IEEE Conference on Nanotechnology, Cincinati, OH, USA, 17–20 July 2006; Volume 1, pp. 116–118. [Google Scholar] [CrossRef]
- Novikov, B.V.; Serov, S.Y.; Filosofov, N.G.; Shtrom, I.V.; Talalaev, V.G.; Vyvenko, O.F.; Ubyivovk, E.V.; Samsonenko, Y.B.; Bouravleuv, A.D.; Soshnikov, I.P.; et al. Photoluminescence Properties of GaAs Nanowire Ensembles with Zincblende and Wurtzite Crystal Structure. Phys. Status Solidi RRL–Rapid Res. Lett. 2010, 4, 175–177. [Google Scholar] [CrossRef]
- Mishra, A.; Titova, L.V.; Hoang, T.B.; Jackson, H.E.; Smith, L.M.; Yarrison-Rice, J.M.; Kim, Y.; Joyce, H.J.; Gao, Q.; Tan, H.H.; et al. Polarization and Temperature Dependence of Photoluminescence from Zincblende and Wurtzite InP Nanowires. Appl. Phys. Lett. 2007, 91, 263104. [Google Scholar] [CrossRef]
- Shan, C.X.; Liu, Z.; Hark, S.K. Photoluminescence Polarization in Individual CdSe Nanowires. Phys. Rev. B 2006, 74, 153402. [Google Scholar] [CrossRef]
- Jacopin, G.; Rigutti, L.; Bugallo, A.D.L.; Julien, F.H.; Baratto, C.; Comini, E.; Ferroni, M.; Tchernycheva, M. High Degree of Polarization of the Near-Band-Edge Photoluminescence in ZnO Nanowires. Nanoscale Res. Lett. 2011, 6, 501. [Google Scholar] [CrossRef]
- Buyanova, I.A.; Stehr, J.E.; Filippov, S.; Chen, W.M.; Tu, C.W. Novel GaP/GaNP Core/Shell Nanowires for Optoelectronics and Photonics. In Proceedings of the 2016 IEEE International Nanoelectronics Conference (INEC), Chengdu, China, 9–11 May 2016; p. 440. [Google Scholar] [CrossRef]
- Filippov, S.; Sukrittanon, S.; Kuang, Y.; Tu, C.; Persson, P.O.Å.; Chen, W.M.; Buyanova, I.A. Origin of Strong Photoluminescence Polarization in GaNP Nanowires. Nano Lett. 2014, 14, 5264–5269. [Google Scholar] [CrossRef]
- Buyanova, I.A.; Chen, W.M.; Ishikawa, F.; Tu, C.W. Novel GaNAs and GaNP-Based Nanowires—Promising Materials for Optoelectronics and Photonics. In Proceedings of the 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), Sendai, Japan, 22–25 August 2016; pp. 38–41. [Google Scholar] [CrossRef]
- Buyanova, I.A.; Chen, W.M. Dilute Nitrides-Based Nanowires—a Promising Platform for Nanoscale Photonics and Energy Technology. Nanotechnology 2019, 30, 292002. [Google Scholar] [CrossRef] [PubMed]
- Jacopin, G.; Rigutti, L.; Bellei, S.; Lavenus, P.; Julien, F.H.; Davydov, A.V.; Tsvetkov, D.; Bertness, K.A.; Sanford, N.A.; Schlager, J.B.; et al. Photoluminescence Polarization in Strained GaN/AlGaN Core/Shell Nanowires. Nanotechnology 2012, 23, 325701. [Google Scholar] [CrossRef] [PubMed]
- Monaico, E.I.; Monaico, E.V.; Ursaki, V.V.; Tiginyanu, I.M. Evolution of Pore Growth in GaAs in Transitory Anodization Regime from One Applied Voltage to Another. Surf. Engin. Appl. Electrochem. 2021, 57, 165–172. [Google Scholar] [CrossRef]
- Ku, C.-S.; Lee, H.-Y.; Huang, J.-M.; Lin, C.-M. Epitaxial growth of ZnO films at extremely low temperature by atomic layer deposition with interrupted flow. Mater. Chem. Phys. 2010, 120, 236–239. [Google Scholar] [CrossRef]
- Yang, J.; Bahrami, A.; Ding, X.; Lehmann, S.; Kruse, N.; He, S.; Wang, B.; Hantusch, M.; Nielsch, K. Characteristics of ALD-ZnO Thin Film Transistor Using H2O and H2O2 as Oxygen Sources. Adv. Mater. Int. 2022, 9, 2101953. [Google Scholar] [CrossRef]
- He, S.; Bahrami, A.; Zhang, X.; Gonzalez Martinez, I.; Lehmann, S.; Nielsh, K. Effect of Powder ALD Interface Modification on the Thermoelectric Performance of Bismuth. Adv. Mater. Technol. 2022, 7, 2100953. [Google Scholar] [CrossRef]
- Drygas, M.; Jelen, P.; Radecka, M.; Janik, J.F. Ammonolysis of polycrystalline and amorphized gallium arsenide GaAs to polytype-specific nanopowders of gallium nitride GaN. RSC Adv. 2016, 6, 41074. [Google Scholar] [CrossRef]
- Kudo, K.; Makita, Y.; Takayasu, I.; Nomura, T.; Kobayashi, T.; Izumi, T.; Matsumori, T. Photoluminescence Spectra of Undoped GaAs Grown by Molecular-beam Epitaxy at Very High and Low Substrate Temperatures. J. Appl. Phys. 1986, 59, 888–891. [Google Scholar] [CrossRef]
- Williams, E.W.; Barry Bebb, H. Photoluminescence II: Gallium Arsenide; Willardson, R.K., Beer, A.C., Eds.; Academic Press: Cambridge, MA, USA, 1972; Volume 8, Chapter 5; pp. 321–392. [Google Scholar]
- Swaminathan, V.; Caruso, R.; Pearton, S.J. Photoluminescence from Annealed Semi-insulating GaAs Crystals: The 1.360 eV Band. J. Appl. Phys. 1988, 63, 2164–2167. [Google Scholar] [CrossRef]
- Shin, K.C.; Kwark, M.H.; Choi, M.H.; Oh, M.H.; Tak, Y.B. Photoluminescence Investigation of the 1.356 eV Band and Stoichiometry in Undoped GaAs. J. Appl. Phys. 1989, 65, 736–741. [Google Scholar] [CrossRef]
- Itoh, T.; Takeuchi, M. Arsenic Vacancy Formation in GaAs Annealed in Hydrogen Gas Flow. Jpn. J. Appl. Phys. 1977, 16, 227–232. [Google Scholar] [CrossRef]
- Meyer, B.K.; Alves, H.; Hofmann, D.M.; Kriegseis, W.; Forster, D.; Bertram, F.; Christen, J.; Hoffmann, A.; Straßburg, M.; Dworzak, M.; et al. Bound Exciton and Donor–Acceptor Pair Recombinations in ZnO. Phys. Stat. Sol. (B) 2004, 241, 231–260. [Google Scholar] [CrossRef]
- Ursaki, V.V.; Tiginyanu, I.M.; Zalamai, V.V.; Rusu, E.V.; Emelchenko, G.A.; Masalov, V.M.; Samarov, E.N. Multiphonon Resonant Raman Scattering in ZnO Crystals and Nanostructured Layers. Phys. Rev. B 2004, 70, 155204. [Google Scholar] [CrossRef]
- Ursaki, V.V.; Tiginyanu, I.M.; Zalamai, V.V.; Masalov, V.M.; Samarov, E.N.; Emelchenko, G.A.; Briones, F. Photoluminescence and Resonant Raman Scattering from ZnO-Opal Structures. J. Appl. Phys. 2004, 96, 1001–1006. [Google Scholar] [CrossRef]
- Ursaki, V.V.; Tiginyanu, I.M.; Zalamai, V.V.; Masalov, V.M.; Samarov, E.N.; Emelchenko, G.A.; Briones, F. Photoluminescence of ZnO Layers Grown on Opals by Chemical Deposition from Zinc Nitrate Solution. Semicond. Sci. Technol. 2004, 19, 851–854. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ursaki, V.V.; Lehmann, S.; Zalamai, V.V.; Morari, V.; Nielsch, K.; Tiginyanu, I.M.; Monaico, E.V. Core–Shell Structures Prepared by Atomic Layer Deposition on GaAs Nanowires. Crystals 2022, 12, 1145. https://doi.org/10.3390/cryst12081145
Ursaki VV, Lehmann S, Zalamai VV, Morari V, Nielsch K, Tiginyanu IM, Monaico EV. Core–Shell Structures Prepared by Atomic Layer Deposition on GaAs Nanowires. Crystals. 2022; 12(8):1145. https://doi.org/10.3390/cryst12081145
Chicago/Turabian StyleUrsaki, Veaceslav V., Sebastian Lehmann, Victor V. Zalamai, Vadim Morari, Kornelius Nielsch, Ion M. Tiginyanu, and Eduard V. Monaico. 2022. "Core–Shell Structures Prepared by Atomic Layer Deposition on GaAs Nanowires" Crystals 12, no. 8: 1145. https://doi.org/10.3390/cryst12081145
APA StyleUrsaki, V. V., Lehmann, S., Zalamai, V. V., Morari, V., Nielsch, K., Tiginyanu, I. M., & Monaico, E. V. (2022). Core–Shell Structures Prepared by Atomic Layer Deposition on GaAs Nanowires. Crystals, 12(8), 1145. https://doi.org/10.3390/cryst12081145