Non-Fermi Liquid Behavior in the Three-Dimensional Hubbard Model
Abstract
:1. Introduction
2. Model and Methods
2.1. Model
2.2. Dynamical Cluster Approximation Cluster
2.3. Continuous Time Quantum Monte Carlo and Simulation Parameters
2.4. Locating the Fermi Surface
2.5. Quasi-Particle Weight
2.6. Fitting of the Quasi-Particle Weight
3. Results
3.1. Quasi-Particle Weight
3.2. Spectral Functions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Dynamical Cluster Approximation
Appendix A.2. Minus Sign of the Quantum Monte Carlo Impurity Solver
References
- Landau, L. The Theory of a Fermi Liquid. Sov. Phys. JETP 1956, 3, 920. [Google Scholar]
- Landau, L. Oscillations in a Fermi liquid. Sov. Phys. JETP 1957, 5, 101–108. [Google Scholar]
- Landau, L. On the Theory of the Fermi Liquid. Sov. Phys. JETP 1959, 8, 70. [Google Scholar]
- Voit, J. One-dimensional Fermi liquids. Rep. Prog. Phys. 1995, 58, 977–1116. [Google Scholar] [CrossRef] [Green Version]
- Shankar, R. Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 1994, 66, 129. [Google Scholar] [CrossRef] [Green Version]
- Abrikosov, A.; Gorkov, L.; Dzyaloshinski, I. Methods of Quantum Field Theory in Statistical Physics; Prentice Hall: Hoboken, NJ, USA, 1963. [Google Scholar]
- Hertz, J.A. Quantum critical phenomena. Phys. Rev. B 1976, 14, 1165–1184. [Google Scholar] [CrossRef]
- Moriya, T.; Kawabata, A. Effect of Spin Fluctuations on Itinerant Electron Ferromagnetism. J. Phys. Soc. Jpn 1973, 34, 639–651. [Google Scholar] [CrossRef]
- Millis, A.J. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 1993, 48, 7183–7196. [Google Scholar] [CrossRef]
- Moriya, T.; Kawabata, A. Effect of Spin Fluctuations on Itinerant Electron Ferromagnetism. II. J. Phys. Soc. Jpn 1973, 35, 669–676. [Google Scholar] [CrossRef]
- Lederer, S.; Schattner, Y.; Berg, E.; Kivelson, S.A. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point. Proc. Natl. Acad. Sci. USA 2017, 114, 4905–4910. [Google Scholar] [CrossRef] [Green Version]
- Steppke, A.; Küchler, R.; Lausberg, S.; Lengyel, E.; Steinke, L.; Borth, R.; Lühmann, T.; Krellner, C.; Nicklas, M.; Geibel, C.; et al. Ferromagnetic Quantum Critical Point in the Heavy-Fermion Metal YbNi4(P1−xAsx)2. Science 2013, 339, 933–936. [Google Scholar] [CrossRef] [Green Version]
- Paschen, S.; Lühmann, T.; Wirth, S.; Gegenwart, P.; Trovarelli, O.; Geibel, C.; Steglich, F.; Coleman, P.; Si, Q. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 2004, 432, 881–885. [Google Scholar] [CrossRef] [Green Version]
- Kastr, G. A Fermi liquid model for the overdoped and optimally doped cuprate superconductors: Scattering rate, susceptibility, spin resonance peak and superconducting transition. Phys. C Supercond. 2000, 340, 119–132. [Google Scholar] [CrossRef]
- Kastrinakis, G. Quasiparticle scattering rate in overdoped superconducting cuprates. Phys. Rev. B 2005, 71, 014520. [Google Scholar] [CrossRef] [Green Version]
- Dzyaloshinskii, I. Extended Van-Hove singularity and related non-Fermi liquids. J. De Phys. I 1996, 6, 119–135. [Google Scholar] [CrossRef]
- González, J.; Stauber, T. Marginal Fermi Liquid in Twisted Bilayer Graphene. Phys. Rev. Lett. 2020, 124, 186801. [Google Scholar] [CrossRef] [PubMed]
- Slakey, F.; Klein, M.V.; Rice, J.P.; Ginsberg, D.M. Raman investigation of the YBa2Cu3O7 imaginary response function. Phys. Rev. B 1991, 43, 3764–3767. [Google Scholar] [CrossRef]
- Mitrano, M.; Husain, A.; Vig, S.; Kogar, A.; Rak, M.; Rubeck, S.; Schmalian, J.; Uchoa, B.; Schneeloch, J.; Zhong, R.; et al. Anomalous density fluctuations in a strange metal. Proc. Natl. Acad. Sci. USA 2018, 115, 5392–5396. [Google Scholar] [CrossRef] [Green Version]
- Bednorz, J.G.; Müller, K.A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Schlesinger, Z.; Collins, R.T.; Holtzberg, F.; Feild, C.; Blanton, S.H.; Welp, U.; Crabtree, G.W.; Fang, Y.; Liu, J.Z. Superconducting energy gap and normal-state conductivity of a single-domain YBa2Cu3O7 crystal. Phys. Rev. Lett. 1990, 65, 801–804. [Google Scholar] [CrossRef]
- Varma, C.M. Pseudogap Phase and the Quantum-Critical Point in Copper-Oxide Metals. Phys. Rev. Lett. 1999, 83, 3538–3541. [Google Scholar] [CrossRef] [Green Version]
- Varma, C.M.; Littlewood, P.B.; Schmitt-Rink, S.; Abrahams, E.; Ruckenstein, A.E. Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys. Rev. Lett. 1989, 63, 1996–1999. [Google Scholar] [CrossRef] [PubMed]
- Kakehashi, Y.; Fulde, P. Marginal Fermi Liquid Theory in the Hubbard Model. Phys. Rev. Lett. 2005, 94, 156401. [Google Scholar] [CrossRef] [PubMed]
- Kakehashi, Y.; Fulde, P. Marginal Fermi liquid and kink structure of quasiparticles in cuprates. J. Magn. Magn. Mater. 2007, 310, 489–491. [Google Scholar] [CrossRef]
- Sire, C.; Varma, C.M.; Ruckenstein, A.E.; Giamarchi, T. Theory of the marginal-Fermi-liquid spectrum and pairing in a local copper oxide model. Phys. Rev. Lett. 1994, 72, 2478–2481. [Google Scholar] [CrossRef]
- Ruckenstein, A.; Varma, C. A theory of marginal fermi-liquids. Phys. C Supercond. 1991, 185–189, 134–140. [Google Scholar] [CrossRef]
- Littlewood, P.B.; Varma, C.M. Phenomenology of the normal and superconducting states of a marginal Fermi liquid (invited). J. Appl. Phys. 1991, 69, 4979–4984. [Google Scholar] [CrossRef]
- Saarloos, C.V.Z.N.W.V. Singular or non-Fermi liquids. Phys. Rep. 2002, 361, 267–417. [Google Scholar] [CrossRef] [Green Version]
- Vidhyadhiraja, N.S.; Macridin, A.; Şen, C.; Jarrell, M.; Ma, M. Quantum Critical Point at Finite Doping in the 2D Hubbard Model: A Dynamical Cluster Quantum Monte Carlo Study. Phys. Rev. Lett. 2009, 102, 206407. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.C.; Rice, T.M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 1988, 37, 3759–3761. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, S.; Gull, E.; Pollet, L.; Burovski, E.; Kozik, E.; Pruschke, T.; Troyer, M. Thermodynamics of the 3D Hubbard Model on Approaching the Néel Transition. Phys. Rev. Lett. 2011, 106, 030401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kent, P.R.C.; Jarrell, M.; Maier, T.A.; Pruschke, T. Efficient calculation of the antiferromagnetic phase diagram of the three-dimensional Hubbard model. Phys. Rev. B 2005, 72, 060411. [Google Scholar] [CrossRef] [Green Version]
- Karchev, N. Quantum critical behavior in three-dimensional one-band Hubbard model at half-filling. Ann. Phys. 2013, 333, 206–220. [Google Scholar] [CrossRef]
- Staudt, R.; Dzierzawa, M.; Muramatsu, A. Phase diagram of the three-dimensional Hubbard model at half filling. Eur. Phys. J. B 2000, 17, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, T.; Toschi, A.; Tomczak, J.M. Separability of dynamical and nonlocal correlations in three dimensions. Phys. Rev. B 2015, 91, 121107. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, T.; Katanin, A.A.; Held, K.; Toschi, A. Interplay of Correlations and Kohn Anomalies in Three Dimensions: Quantum Criticality with a Twist. Phys. Rev. Lett. 2017, 119, 046402. [Google Scholar] [CrossRef] [Green Version]
- Hettler, M.H.; Mukherjee, M.; Jarrell, M.; Krishnamurthy, H.R. Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems. Phys. Rev. B 2000, 61, 12739–12756. [Google Scholar] [CrossRef] [Green Version]
- Maier, T.; Jarrell, M.; Pruschke, T.; Hettler, M.H. Quantum cluster theories. Rev. Mod. Phys. 2005, 77, 1027–1080. [Google Scholar] [CrossRef] [Green Version]
- Betts, D.D.; Schulenburg, J.; Stewart, G.E.; Richter, J.; Flynn, J.S. Exact diagonalization of the S= 1/2 Heisenberg antiferromagnet on finite BCC lattices to estimate properties on the infinite lattice. J. Phys. A 1998, 31, 7685–7698. [Google Scholar] [CrossRef]
- Gull, E.; Millis, A.J.; Lichtenstein, A.I.; Rubtsov, A.N.; Troyer, M.; Werner, P. Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 2011, 83, 349–404. [Google Scholar] [CrossRef] [Green Version]
- Rubtsov, A.N.; Savkin, V.V.; Lichtenstein, A.I. Continuous-time quantum Monte Carlo method for fermions. Phys. Rev. B 2005, 72, 035122. [Google Scholar] [CrossRef] [Green Version]
- Assaad, F.F. 7 Continuous-time QMC Solvers for Electronic Systems in Fermionic and Bosonic Baths. In DMFT at 25: Infinite Dimensions; Verlag des Forschungszentrum Jülich: Jülich, Germany, 2014; p. 51. [Google Scholar]
- Mikelsons, K.; Macridin, A.; Jarrell, M. Relationship between Hirsch-Fye and weak-coupling diagrammatic quantum Monte Carlo methods. Phys. Rev. E 2009, 79, 057701. [Google Scholar] [CrossRef] [PubMed]
- Shepard, D. A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. In Proceedings of the 23rd ACM National Conference, New York, NY, USA, 27–29 August 1968; Association for Computing Machinery: New York, NY, USA, 1968; pp. 517–524. [Google Scholar] [CrossRef]
- Arsenault, L.F.; Sémon, P.; Tremblay, A.M.S. Benchmark of a modified iterated perturbation theory approach on the FCC lattice at strong coupling. Phys. Rev. B 2012, 86, 085133. [Google Scholar] [CrossRef] [Green Version]
- Serene, D.H.J. Self consistent numerical calculations for nested Fermi liquids. J. Phys. Chem. Solids 1991, 52, 1385–1390. [Google Scholar] [CrossRef]
- Gubernatis, J.E.; Jarrell, M.; Silver, R.N.; Sivia, D.S. Quantum Monte Carlo simulations and maximum entropy: Dynamics from imaginary-time data. Phys. Rev. B 1991, 44, 6011–6029. [Google Scholar] [CrossRef]
- Jarrell, M.; Gubernatis, J.E. Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data. Phys. Rep. 1996, 269, 133–195. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, S.; Ye, J. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 1993, 70, 3339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitaev, A. A Simple Model of Quantum Holography (Part 2), Talk at KITP; Caltech: Pasadena, CA, USA, 2015. [Google Scholar]
- Galanakis, D.; Khatami, E.; Mikelsons, K.; Macridin, A.; Moreno, J.; Browne, D.A.; Jarrell, M. Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model. Philos. Trans. R. Soc. A 2011, 369, 1670–1686. [Google Scholar] [CrossRef]
- Mikelsons, K.; Khatami, E.; Galanakis, D.; Macridin, A.; Moreno, J.; Jarrell, M. Thermodynamics of the quantum critical point at finite doping in the two-dimensional Hubbard model studied via the dynamical cluster approximation. Phys. Rev. B 2009, 80, 140505. [Google Scholar] [CrossRef] [Green Version]
- Sénéchal, D. An introduction to quantum cluster methods. arXiv 2010, arXiv:0806.2690. [Google Scholar]
- Fotso, H.F.; Tam, K.M.; Moreno, J. Beyond quantum cluster theories: Multiscale approaches for strongly correlated systems. Quantum Sci. Technol. 2022, 7, 033001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kellar, S.; Tam, K.-M.; Moreno, J. Non-Fermi Liquid Behavior in the Three-Dimensional Hubbard Model. Crystals 2023, 13, 106. https://doi.org/10.3390/cryst13010106
Kellar S, Tam K-M, Moreno J. Non-Fermi Liquid Behavior in the Three-Dimensional Hubbard Model. Crystals. 2023; 13(1):106. https://doi.org/10.3390/cryst13010106
Chicago/Turabian StyleKellar, Samuel, Ka-Ming Tam, and Juana Moreno. 2023. "Non-Fermi Liquid Behavior in the Three-Dimensional Hubbard Model" Crystals 13, no. 1: 106. https://doi.org/10.3390/cryst13010106
APA StyleKellar, S., Tam, K. -M., & Moreno, J. (2023). Non-Fermi Liquid Behavior in the Three-Dimensional Hubbard Model. Crystals, 13(1), 106. https://doi.org/10.3390/cryst13010106