Crystal Engineering to Avoid Pairing Dipolar Moments: The Case of 5-Nitrouracil, a Highly Polarizable Molecule
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
3.1. Synthesis
3.2. Structure Determination
3.3. Theoretical Methods
4. Results and Discussion
4.1. Neutral 5NU
4.1.1. Polymorphs of 5NU
4.1.2. 5NU Hydrates
4.1.3. 5NU Solvates
4.1.4. 5NU Co-Crystals
4.2. 5NU Salts
4.2.1. L-Histidinium 5-Nitrouracilate
4.2.2. 5NU Salts of Guanidine Derivatives
Guanidinium 5-Nitrouracilate Monohydrate
Phenylguanidinium 5-Nitrouracilate Monohydrate
Diphenylguanidinium 5-Nitrouracilate Dihydrate
Triphenylguanidinium 5-Nitrouracilate
4.2.3. Other 5NU Salts
Cytosinium 5-Nitrouracilate
Benzamidinium 5-Nitrouracilate
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Franken, P.A.; Hill, A.E.; Peters, C.; Weinreich, G. Generation of Optical Harmonics. Phys. Rev. Lett. 1961, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Boyd, R.W. Chapter 1—The Nonlinear Optical Susceptibility. In Nonlinear Optics, 4th ed.; Boyd, R.W., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–64. ISBN 978-0-12-811002-7. [Google Scholar]
- Rentzepis, P.M.; Pao, Y.H. Laser-Induced Optical Second Harmonic Generation in Organic Crystals. Appl. Phys. Lett. 1964, 5, 156–158. [Google Scholar] [CrossRef]
- Shirota, Y.; Kageyama, H. 1—Organic Materials for Optoelectronic Applications: Overview. In Handbook of Organic Materials for Electronic and Photonic Devices, 2nd ed.; Ostroverkhova, O., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 3–42. ISBN 978-0-08-102284-9. [Google Scholar]
- Nicoud, J.F.; Twieg, R.J. Design and Synthesis of Organic Molecular Compounds for Efficient Second-Harmonic Generation. In Nonlinear Optical Properties of Organic Molecules and Crystals; Elsevier: Amsterdam, The Netherlands, 1987; pp. 227–296. [Google Scholar]
- Liu, Y.; Yuan, Y.; Tian, X.; Yuan, J.; Sun, J. High First-Hyperpolarizabilities of Thiobarbituric Acid Derivative-Based Donor-π-Acceptor Nonlinear Optical-Phores: Multiple Theoretical Investigations of Substituents and Conjugated Bridges Effect. Int. J. Quantum. Chem. 2020, 120, e26176. [Google Scholar] [CrossRef]
- Bureš, F. Fundamental Aspects of Property Tuning in Push-Pull Molecules. RSC Adv. 2014, 4, 58826–58851. [Google Scholar] [CrossRef] [Green Version]
- Karna, S.P.; Prasad, P.N.; Dupuis, M. Nonlinear Optical Properties of P-nitroaniline: An Ab Initio Time-dependent Coupled Perturbed Hartree–Fock Study. J. Chem. Phys. 1991, 94, 1171–1181. [Google Scholar] [CrossRef]
- Woodford, J.N.; Pauley, M.A.; Wang, C.H. Solvent Dependence of the First Molecular Hyperpolarizability of P-Nitroaniline Revisited. J. Phys. Chem. A 1997, 101, 1989–1992. [Google Scholar] [CrossRef]
- Potter, K.S.; Simmons, J.H. Chapter 8—Nonlinear Optical Processes in Materials. In Optical Materials, 2nd ed.; Potter, K.S., Simmons, J.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 429–478. ISBN 978-0-12-818642-8. [Google Scholar]
- Baptista, R.M.F.; Bernardo, C.R.; Belsley, M.S.; de Matos Gomes, E. Electrospun Fibers with Highly Polarized Second Harmonic Light from 2-Amino-4-Nitroaniline and 3-Nitroaniline Nanocrystals Embedded in Poly-L-Lactic Acid Polymer. Opt. Mater. 2021, 116, 111089. [Google Scholar] [CrossRef]
- Dalton, L.; Benight, S. Theory-Guided Design of Organic Electro-Optic Materials and Devices. Polymers 2011, 3, 1325–1351. [Google Scholar] [CrossRef] [Green Version]
- Verbiest, T.; Houbrechts, S.; Kauranen, M.; Clays, K.; Persoons, A. Second-Order Nonlinear Optical Materials: Recent Advances in Chromophore Design. J. Mater. Chem. 1997, 7, 2175–2189. [Google Scholar] [CrossRef]
- Chemla, D.S.; Oudar, J.L.; Jerphagnon, J. Origin of the Second-Order Optical Susceptibilities of Crystalline Substituted Benzene. Phys. Rev. B 1975, 12, 4534–4546. [Google Scholar] [CrossRef]
- Zyss, J.; Oudar, J.L. Relations between Microscopic and Macroscopic Lowest-Order Optical Nonlinearities of Molecular Crystals with One- or Two-Dimensional Units. Phys. Rev. A 1982, 26, 2028–2048. [Google Scholar] [CrossRef]
- Champagne, B.; Bishop, D.M. Calculations of Nonlinear Optical Properties for the Solid State. In Advances in Chemical Physics; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 41–92. ISBN 9780471428015. [Google Scholar]
- Kleinman, D.A. Nonlinear Dielectric Polarization in Optical Media. Phys. Rev. 1962, 126, 1977–1979. [Google Scholar] [CrossRef]
- Jerphagnon, J. Optical Second-Harmonic Generation in Isocyclic and Heterocyclic Organic Compounds. IEEE J. Quantum Electron. 1971, 7, 42–43. [Google Scholar] [CrossRef]
- Puccetti, G.; Perigaud, A.; Badan, J.; Ledoux, I.; Zyss, J. 5-Nitrouracil: A Transparent and Efficient Nonlinear Organic Crystal. J. Opt. Soc. Am. B 1993, 10, 733–744. [Google Scholar] [CrossRef]
- Cockayne, B. The Growth of Single Crystals by R. A. Laudise. J. Appl. Crystallogr. 1972, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Arecchi, F.T.; Schulz-Dubois, E.O.; Stitch, M.L. Laser Handbook; North-Holland Publ. Co.: Amsterdam, The Netherlands, 1972; ISBN 0720402131. [Google Scholar]
- Zumsteg, F.C.; Bierlein, J.D.; Gier, T.E. KxRb1−xTiOPO4: A New Nonlinear Optical Material. J. Appl. Phys. 1976, 47, 4980–4985. [Google Scholar] [CrossRef]
- Bierlein, J.D.; Vanherzeele, H. Potassium Titanyl Phosphate: Properties and New Applications. J. Opt. Soc. Am. B 1989, 6, 622–633. [Google Scholar] [CrossRef]
- Cassidy, C.; Halbout, J.M.; Donaldson, W.; Tang, C.L. Nonlinear Optical Properties of Urea. Opt. Commun. 1979, 29, 243–246. [Google Scholar] [CrossRef]
- Catella, G.C.; Bohn, J.H.; Luken, J.R. Tunable High-Power Urea Optical Parametric Oscillator. IEEE J. Quantum Electron. 1988, 24, 1201–1203. [Google Scholar] [CrossRef]
- Zyss, J.; Chemla, D.S.; Nicoud, J.F. Demonstration of Efficient Nonlinear Optical Crystals with Vanishing Molecular Dipole Moment: Second-harmonic Generation in 3-methyl-4-nitropyridine-1-oxide. J. Chem. Phys. 1981, 74, 4800–4811. [Google Scholar] [CrossRef]
- Rao, T.S.; Rando, R.F.; Huffman, J.H.; Revankar, G.R. Synergistic Effect of 5-Nitro-2′-Deoxyuridine with Ganciclovir Against Human Cytomegalovirus In Vitro. Nucleosides Nucleotides 1995, 14, 1997–2008. [Google Scholar] [CrossRef]
- Smiley, J.A.; Angelot, J.M.; Cannon, R.C.; Marshall, E.M.; Asch, D.K. Radioactivity-Based and Spectrophotometric Assays for Isoorotate Decarboxylase: Identification of the Thymidine Salvage Pathway in Lower Eukaryotes. Anal. Biochem. 1999, 266, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Šebesta, K.; Bauerová, J.; Šormová, Z. Inhibition of Uracil and Thymine Degradation by Some 5-Substituted Uracil Analogues. Biochim. Biophys. Acta 1961, 50, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.P.; Singh, B.N.; Sastry, M.S.; Ghose, A.K. X-Ray Diffraction Studies on Metal Complexes of 5-Nitrouracil. Cryst. Res. Technol. 1995, 30, K13–K15. [Google Scholar] [CrossRef]
- Kattan, D.; Alcolea Palafox, M.; Rathor, S.K.; Rastogi, V.K. A DFT Analysis of the Molecular Structure, Vibrational Spectra and Other Molecular Properties of 5-Nitrouracil and Comparison with Uracil. J. Mol. Struct. 2016, 1106, 300–315. [Google Scholar] [CrossRef]
- Copik, A.; Suwinski, J.; Walczak, K.; Bronikowska, J.; Czuba, Z.; Król, W. Synthesis of 1-(2-hydroxy-3-methoxypropyl)uracils and Their Activity against l1210 and Macrophage Raw 264.7 Cells. Nucleosides Nucleotides Nucleic Acids 2002, 21, 377–383. [Google Scholar] [CrossRef]
- Murti, Y.; Vijayan, C. From Optics to Photonics. In Essentials of Nonlinear Optics; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 1–9. ISBN 9781118902332. [Google Scholar]
- Sheldrick, G.M. SADABS, Software for Empirical Absorption Corrections; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Structure Validation in Chemical Crystallography. Acta Crystallogr. Sect. D 2009, 65, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and Analysis of Crystal Structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Etter, M.C.; MacDonald, J.C.; Bernstein, J. Graph-Set Analysis of Hydrogen-Bond Patterns in Organic Crystals. Acta Crystallogr. Sect. B 1990, 46, 256–262. [Google Scholar] [CrossRef]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.-L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Etter, M.C. Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds. Acc. Chem. Res. 1990, 23, 120–126. [Google Scholar] [CrossRef]
- Kennedy, A.R.; Okoth, M.O.; Sheen, D.B.; Sherwood, J.N.; Vrcelj, R.M. Two New Structures of 5-Nitrouracil. Acta Crystallogr. Sect. C 1998, 54, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Srinivasa Gopalan, R.; Kulkarni, G.U.; Rao, C.N.R. An Experimental Charge Density Study of the Effect of the Noncentric Crystal Field on the Molecular Properties of Organic NLO Materials. ChemPhysChem 2000, 1, 127–135. [Google Scholar] [CrossRef]
- Koritsansky, T.; Howard, S.; Richter, T.; Mallinson, P.; Su, Z.; Hansen, N. XD, A Computer Program Package for Multipolar Refinement and Analysis of Charge Density from Diffraction Data; Free University: Berlin, Germany, 1995. [Google Scholar]
- Stewart, J.J.P. MOPAC: A Semiempirical Molecular Orbital Program. J. Comput. Aided Mol Des. 1990, 4, 1–103. [Google Scholar] [CrossRef]
- Okoth, M.O.; Vrcelj, R.M.; Pitak, M.B.; Sheen, D.B.; Sherwood, J.N. Polymorphism and Hydrated States in 5-Nitrouracil Crystallized from Aqueous Solution. Cryst. Growth Des. 2012, 12, 5002–5011. [Google Scholar] [CrossRef]
- Craven, B.M. The Crystal Structure of 5-Nitrouracil Monohydrate. Acta Crystallogr. 1967, 23, 376–383. [Google Scholar] [CrossRef]
- Pereira Silva, P.S.; Domingos, S.R.; Ramos Silva, M.; Paixão, J.A.; Matos Beja, A. A New Polymorph of 5-Nitrouracil Monohydrate. Acta Crystallogr. Sect. E 2008, 64, o1091. [Google Scholar] [CrossRef]
- Okoth, M.O.; Vrcelj, R.M.; Sheen, D.B.; Sherwood, J.N. Dehydration Mechanism of a Small Molecular Solid: 5-Nitrouracil Hydrate. CrystEngComm 2013, 15, 8202–8213. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.; Gopalan, R.S.; Kulkarni, G.U.; Rao, C.N.R. Hydrogen Bonding Patterns in the Cocrystals of 5-Nitrouracil with Several Donor and Acceptor Molecules. Beilstein J. Org. Chem. 2005, 15, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portalone, G. Solid-Phase Molecular Recognition of Cytosine Based on Proton-Transfer Reaction. Part II. Supramolecular Architecture in the Cocrystals of Cytosine and Its 5-Fluoroderivative with 5-Nitrouracil. Chem. Cent. J. 2011, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Portalone, G.; Colapietro, M. An Unusual Syn Conformation of 5-Formyluracil Stabilized by Supramolecular Interactions. Acta Crystallogr. Sect. C 2007, 63, o650–o654. [Google Scholar] [CrossRef] [PubMed]
- Domingos, S.R.; Silva, P.S.P.; Buma, W.J.; Garcia, M.H.; Lopes, N.C.; Paixão, J.A.; Silva, M.R.; Woutersen, S. Amplification of the Linear and Nonlinear Optical Response of a Chiral Molecular Crystal. J. Chem. Phys. 2012, 136, 134501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrosyan, A.M.; Giester, G.; Ghazaryan, V.v.; Bezhanova, L.S.; Fleck, M.; Atanesyan, A.K. New Triclinic Polymorph of L-Histidinium 5-Nitrouracilate. J. Mol. Struct. 2018, 1173, 770–775. [Google Scholar] [CrossRef]
- Ramos Silva, M.; Silva, P.; Beja, A.; Paixão, J. Crystal Chemistry of an Atropisomer: Conformation, Chirality, Aromaticity and Intermolecular Interactions. In Chemical Crystallography; Connelly, B., Ed.; Nova Science Publishers: New York, NY, USA, 2010; pp. 103–130. [Google Scholar]
- Pereira Silva, P.S.; Domingos, S.R.; Ramos Silva, M.; Paixão, J.A.; Matos Beja, A. N,N′,N″-Triphenylguanidinium 5-Nitro-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ide. Acta Crystallogr. Sect. E 2008, 64, o1082–o1083. [Google Scholar] [CrossRef] [Green Version]
- Grothe, E.; Meekes, H.; Vlieg, E.; ter Horst, J.H.; de Gelder, R. Solvates, Salts, and Cocrystals: A Proposal for a Feasible Classification System. Cryst. Growth Des. 2016, 16, 3237–3243. [Google Scholar] [CrossRef] [Green Version]
- Portalone, G. Supramolecular Association in Proton-Transfer Adducts Containing Benzamidinium Cations. I. Four Molecular Salts with Uracil Derivatives. Acta Crystallogr. Sect. C 2010, 66, o295–o301. [Google Scholar] [CrossRef]
Compound | LiNbO3 [20,21] | KTiOPO4 [22,23] | Urea [24,25] | POM [26] 3-Methyl-4-nitropyridine-1-oxide | 5NU [19] |
---|---|---|---|---|---|
Transparency range (nm) | 330–6000 | 350–4500 | 230–1440 | 450–1550 | 410–1550 |
Symmetry | Trigonal | Orthorhombic | Tetragonal | Orthorhombic | Orthorhombic |
Class | 3m | mm2 | 42m | 222 | 222 |
Nonlinear-optical coefficients (at 1.06 mm) | d15= 4.4 pm/V d22 = 3.6 pm/V d33 = −47 pm/V | d31= 6.5 pm/V d32 = 5.0 pm/V d33 = 13.7 pm/V d15 = 6.5 pm/V d33 = 7.6 pm/V | d14 = 1.4 pm/V | d14 = 10 pm/V | d14 = 8.7 pm/V |
Damage threshold | (40 ns) 0.69, >1 GW/cm2 | (l ns) 1.06, 15 GW/cm2 | (10 ns) 1.06, 0.355, 30 MW/cm2 | (10 ns) 1.06, 200 MW/cm2 0.532, 20 MW/cm2 | (10 ns) 1.06, 3 GW/cm2 0.532, 1 GW/cm2 |
Growth Technique | Czochralski method Tm = 1260 °C | Temperature gradient transport | Temperature variation Tm = 135 °C | Temperature variation Tm = 136 °C | Temperature gradient transport |
Some remarkable properties | Good air conservation | Excellent air conservation | Hygroscopic | Closed cell with index liquid | Excellent air conservation |
Compound/ CCDC Code | Unit Cell (Å, Å3) | Space Group | Dihedral Angle between NO2 and Ring (°) | H-Bond Motif | Reference |
---|---|---|---|---|---|
5-nitrouracil (I) NIMFOE | a = 5.873(1) b = 9.693(1) c = 10.4561(9) β = 104.07(1) V = 577.4(1) | P21/n | 6.95(16) | Chains with alternating M2, M3 motifs | [43] |
5-nitrouracil (II) NIMFOE01 | a = 8.308(3) b = 10.426(3) c = 13.363(4) V = 1157.5(6) | Pbca | 1.71(12) | Chains with alternating M2, M3 motifs | [44] |
5-nitrouracil (III) NIMFOE02 | a = 5.43420(10) b = 9.84060(10) c = 10.36590(10) V = 554.325(13) | P212121 | 2.01(14) | Layers with M8 motif | [44] |
Compound/ CCDC Code | Unit Cell (Å, °, Å3) | Space Group | Dihedral Angle between NO2 and Ring (°) | H-Bond Motif | Reference |
---|---|---|---|---|---|
5-nitrouracil monohydrate (IVa) NURAMH | Reported: | P21/c | 4.96 1 | Layers with M2 motif | [48] |
a = 5.137(5) b = 21.956(6) c = 9.587(7) β = 143.50(8) V = 642 | |||||
Conventional: | |||||
a = 5.137 b = 21.956 c = 6.254 β = 114.24 V = 643 | |||||
5-nitrouracil monohydrate (IVb) NURAMH02 120 K | a = 5.06420(10) b = 21.9255(5) c = 6.11760(10) β = 113.1080(10) V = 624.77(2) | P21/c | 4.65(16) | Layers with M2 motif | [47] |
5-nitrouracil monohydrate (V) NURAMH01 | a = 6.27990(10) b = 7.8481(2) c = 13.8068(3) β = 93.8420(10) V = 678.94(3) | P21/c | 12.51(14) | 3D network with M1 motif | [49] |
Compound/ CCDC Code | Unit Cell (Å, °, Å3) | Space Group | Dihedral Angle between NO2 and Ring (°) | H-Bond Motif | Reference |
---|---|---|---|---|---|
5-Nitrouracil ethanol hemihydrate (VI) JESNAX | a = 11.8264(8) b = 11.8738(8) c = 12.6511(8) β = 98.6960(10) V = 1756.1(2) | P21/c | 4.6(5) 12.3(6) | Clusters with M2 motif Chains | [51] |
5-Nitrouracil dimethyl sulfoxide solvate (VIIa) NIMGAR | a = 8.858(1) b = 6.9619(6) c = 15.822(1) β = 95.823(8) V = 970.7(1) | P21/n | 15.80(16) | Chains | [43] |
5-Nitrouracil dimethyl sulfoxide solvate (VIIb) NIMGAR01 | a = 8.8723(6) b = 6.9700(5) c = 15.8489(11) β = 95.8760(10) V = 974.95(12) | P21/n | 15.7(2) | Chains | [51] |
5-Nitrouracil bis(formamide) (VIII) JESMUQ | a = 14.1865(8) b = 11.5840(7) c = 12.7907(7) β = 94.7750(10) V = 2094.7(2) | P21/c | 9.0(2) 1.6(2) | Layers | [51] |
5-Nitrouracil pyridine (IX) JESMOK | a = 7.5173(4) b = 12.7817(8) c = 10.8938(7) β = 97.78 V = 1037.08(11) | P21/c | 5.5(3) | Chains with M7 motif | [51] |
5-Nitrouracil hemikis (dioxane) (X) JESMAW | a = 8.3535(12) b = 6.4277(10) c = 15.703(2) β = 101.810(3) V = 825.3(2) | P21/n | 2.7(6) | Layers with M3 motif | [51] |
Compound/ CCDC Code | Unit Cell (Å, °, Å3) | Space Group | Dihedral Angle between NO2 and Ring (°) | H-Bond Motif | Reference |
---|---|---|---|---|---|
5-Nitrouracil 5-Fluorocytosine dihydrate (XI) GATMUL | a = 10.2066(6) b = 28.2758(11) c = 4.7187(3) β = 111.293(6) V = 1268.85(12) | Cc | 3.8(9) | Chains | [52] |
5-Nitrouracil piperazine (XII) JESMEA | a = 4.3579(5) b = 9.8014(12) c = 12.731(2) α = 94.712(2) β = 99.452(2) γ = 97.603(2) V = 528.68(11) | P-1 | 6.4(4) | Chains with M2 motif | [51] |
5-Nitrouracil dimethylpiperazine (XIII) JESMIE | a = 7.1052(14) b = 7.601(2) c = 10.150(2) α = 93.023(3) β = 99.452(2) γ = 117.689(2) V = 453.8(2) | P-1 | 18.7(13) | Chains with M1 motif | [51] |
5-Nitrouracil diaza [2.2.2]bicyclooctane (XIV) JESNIF | a = 9.23230(10) b = 9.65980(10) c = 32.2899(6) β = 90.8010(10) V = 2879.40(7) | P21/c | 3.0(4) 3.0(4) | 3D network with M2 motif | [51] |
Aminopyridine 5-Nitrouracil (XV) JESNEB 1 | a = 9.7466(2) b = 32.0076(6) c = 10.5372(2) β = 122.2060(10) V = 2781.46(10) | P21/c | 2.0(7) | Ribbons with M22− motif | [51] |
Compound/ CCDC Code | Unit Cell (Å, °, Å3) | Space Group | Dihedral Angle between NO2 and Ring (°) | H-Bond Motif | Reference |
---|---|---|---|---|---|
L-Histidinium 5-Nitrouracilate (XVIa) BAQQIW | a = 6.1911(16) b = 7.332(2) c = 13.729(4) β = 99.990(13) V = 613.8(3) | P21 | 3.33(17) | 3D network | [54] |
L-Histidinium 5-Nitrouracilate (XVIb) JIMJOH | At 200K: a = 6.1965(2) b = 7.2965(3) c = 13.7236(5) β = 99.919(2) V = 611.21(4) | P21 | 3.38(11) | 3D network | [55] |
L-Histidinium 5-Nitrouracilate (XVII) BAQQIW01 | a = 5.1555(9) b = 8.3627(15) c = 14.323(3) α = 83.206(5) β = 89.993(5) γ = 88.549(5) V = 612.99(19) | P1 | 2.02(2) 3.9(2) | 3D network with M1 motif | [55] |
Compound | Guanidinium 5-Nitrouracilate Monohydrate (XVIII) | Phenylguanidinium 5-Nitrouracilate Monohydrate (XIX) |
---|---|---|
Temperature/K | 293 | 293 |
Empirical formula | C5H10N6O5 | C11H14N6O5 |
Formula weight | 234.19 | 310.28 |
Wavelength/Å | 0.71073 | 0.71073 |
Crystal system | Triclinic | Monoclinic |
Space group | P-1 | P21/c |
a/Å | 3.65270(10) | 9.7466(2) |
b/Å | 11.1035(3) | 32.0076(6) |
c/Å | 11.8152(3) | 10.5372(2) |
a/° | 82.383(2) | 90 |
b/° | 86.406(2) | 122.2060(10) |
c/° | 89.405(2) | 90 |
Volume/Å3 | 474.03(2) | 2781.46(10) |
Z | 2 | 8 |
Calculated density/(g/cm3) | 1.641 | 1.404 |
Absorption coefficient/mm−1 | 0.145 | 0.105 |
F(000) | 244 | 1374 |
θ range for data collection/deg. | 1.74–27.46 | 2.37–28.74 |
Index ranges | –4 < h < 4,–14 < k < 14, –15 < l < 15 | –12 < h < 13,–43 < k < 43, –15 < l < 15 |
Reflections collected/unique | 9678/1545 | 89166/4531 |
Completeness to θmax | 100% | 99.5% |
Data/restraints/parameters | 1545/0/173[R(int) = 0.0357 | 4531/0/454 [R(int) = 0.0311 |
Goodness–of–fit on F2 | 1.050 | 1.0026 |
Final R index [I > 2σ(I)] | R1 = 0.0363 wR2 = 0.0890 | R1 = 0.0441 wR2 = 0.1172 |
R index (all data) | R1 = 0.0591 wR2 = 0.1003 | R1 = 0.0786 wR2 = 0.1378 |
Largest diff. peak and hole (e Å −)3) | –0.162 and 0.256 | –0.198 and 0.215 |
D−H···A | D−H | H···A | D···A | D−H···A |
---|---|---|---|---|
N3—H3···O1 i | 0.857(17) | 1.984(18) | 2.8387(15) | 174.4(15) |
N4—H4B···O1W ii | 0.89(2) | 2.01(2) | 2.884(2) | 167.3(18) |
N4—H4A···O2 iii | 0.87(2) | 2.26(2) | 3.004(2) | 143.9(17) |
N5—H5A···N1 ii | 0.86(2) | 2.35(2) | 3.0626(18) | 140.4(17) |
N5—H5B···O4 iv | 0.89(2) | 2.07(2) | 2.9590(19) | 175.0(18) |
N6—H6A···O2 iii | 0.924(19) | 2.132(19) | 2.9773(18) | 151.5(16) |
N6—H6A···O3 iii | 0.924(19) | 2.274(18) | 2.9655(17) | 131.2(15) |
N6—H6B···O3 iv | 0.86(2) | 2.30(2) | 3.1445(18) | 171.6(17) |
O1W—H1W···O1 | 0.86(3) | 1.90(3) | 2.7522(17) | 171(2) |
O1W—H2W···O2 v | 0.82(2) | 2.44(3) | 3.2104(18) | 157(2) |
D—H···A | D—H | H···A | D···A | D—H···A |
---|---|---|---|---|
O1W—H1···O4A | 0.82(4) | 1.99(4) | 2.7274(17) | 150(3) |
O1W—H1A···O7A | 0.82(4) | 2.42(3) | 3.0398(19) | 133(3) |
O1W—H1B···O2B i | 0.75(3) | 2.10(3) | 2.8450(19) | 170(4) |
O2—H2A···O4B | 0.87(3) | 2.03(3) | 2.7876(17) | 146(3) |
O2W—H2A···O7B | 0.87(3) | 2.29(3) | 2.9731(18) | 136(3) |
O2W—H2B···O2A i | 0.74(3) | 2.15(3) | 2.8746(18) | 167(3) |
N3—H3···O4B i | 0.893(17) | 1.961(18) | 2.8508(15) | 174.0(15) |
N3B—H3B···O4A i | 0.870(17) | 1.993(17) | 2.8606(15) | 174.1(15) |
N6C—H6C1···O2W ii | 0.88(2) | 2.09(2) | 2.930(2) | 159.1(18) |
N6C—H6C2···O2A | 0.93(2) | 1.91(2) | 2.8354(19) | 176.8(18) |
N7C—H7C···O7B ii | 0.85(2) | 2.39(2) | 3.0006(18) | 129.4(18) |
N7C—H7C1···O2W ii | 0.85(2) | 2.34(2) | 3.118(3) | 153(2) |
N8—H8C···N1A | 0.905(19) | 2.015(19) | 2.9138(17) | 172.0(16) |
N6D—H6D1···O1W iii | 0.86(2) | 2.27(2) | 3.020(2) | 145.9(17) |
N6D—H6D2···O2B iv | 0.89(2) | 1.92(2) | 2.8082(18) | 177.0(19) |
N7D—H7D1···O1W iii | 0.86(2) | 2.04(2) | 2.871(2) | 162(2) |
N7D—H7D1···O7A iii | 0.86(2) | 2.55(2) | 3.0295(17) | 116.4(16) |
N8D—H8D···N1B iv | 0.873(19) | 2.080(19) | 2.9495(17) | 173.9(17) |
Compound/ CCDC Code | Unit Cell (Å, °, Å3) | Space Group | Dihedral Angle between NO2 and Ring (°) | H-Bond Motif | Reference |
---|---|---|---|---|---|
Guanidinium 5-Nitrouracilate monohydrate (XVIII) CCDC 2222685 | a = 3.65270(10) b = 11.1035(3) c = 11.8152(3) α = 82.383(2) β = 86.406(2) γ = 89.405(2) V = 474.03(2) | P-1 | 2.8(2) | 3D network with M12− motif | This work |
Phneylguanidinium 5-Nitrouracilate monohydrate (XIX) CCDC 2222686 | a = 9.7466(2) b = 32.0076(6) c = 10.5372(2) β = 122.2060(10) V = 2781.46(10) | P21/c | 1.3(1) 6.7(1) | Ribbons with M22− motif | This work |
Diphenylguanidinium 5-Nitrouracilate dihydrate (XX) BAQPAN | a = 6.6889(2) b = 11.5839(3) c = 13.7723(3) α = 112.910(2) β = 91.715(2) γ = 104.582(2) V = 941.44(4) | P-1 | 6.04(19) | Slabs with M12− motif. | [56] |
Triphenylguanidinium 5-Nitrouracilate (XXI) WIZXAF | a = 10.7495(4) b = 15.6892(7) c = 15.5624(7) β = 123.456(3) V = 2189.74(18) | P21/c | 11.4(2) | Columns | [57] |
Compound/ CCDC Code | Unit Cell (Å, °, Å3) | Space Group | Dihedral Angle between NO2 and Ring (°) | H-Bond Motif | Reference |
---|---|---|---|---|---|
Cytosinium 5-Nitrouracilate Cytosine 5-Nitrouracil dihydrate (XXII) GATMOF | a = 3.65270(10) b = 11.1035(3) c = 11.8152(3) α = 82.383(2) β = 86.406(2) γ = 89.405(2) V = 474.03(2) | P-1 | 1.2(5) 1.8(5) | Layers (with neutral/charged pairs) | [52] |
Benzamidinium 5-Nitrouracilate dihydrate (XXIII) TUWDEV | a = 4.3625(4) b = 10.4461(11) c = 13.8556(12) α = 78.551(7) β = 86.841(8) γ = 84.051(7) V = 615.13(10) | P-1 | 1.6(3) | Ribbons with M22− motif. | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos Silva, M.; Pereira da Silva, P. Crystal Engineering to Avoid Pairing Dipolar Moments: The Case of 5-Nitrouracil, a Highly Polarizable Molecule. Crystals 2023, 13, 145. https://doi.org/10.3390/cryst13010145
Ramos Silva M, Pereira da Silva P. Crystal Engineering to Avoid Pairing Dipolar Moments: The Case of 5-Nitrouracil, a Highly Polarizable Molecule. Crystals. 2023; 13(1):145. https://doi.org/10.3390/cryst13010145
Chicago/Turabian StyleRamos Silva, Manuela, and Pedro Pereira da Silva. 2023. "Crystal Engineering to Avoid Pairing Dipolar Moments: The Case of 5-Nitrouracil, a Highly Polarizable Molecule" Crystals 13, no. 1: 145. https://doi.org/10.3390/cryst13010145
APA StyleRamos Silva, M., & Pereira da Silva, P. (2023). Crystal Engineering to Avoid Pairing Dipolar Moments: The Case of 5-Nitrouracil, a Highly Polarizable Molecule. Crystals, 13(1), 145. https://doi.org/10.3390/cryst13010145