Temperature Behavior of Precursor Clusters at the Pre-Crystallization Phase of K(H2PO4) Studied by SAXS
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- (1)
- A major fraction of monomers and a minor fraction of octamers (90 °C < T< 50 °C).
- (2)
- A significant increase in the volume fraction of octamers (50 °C < T< 5 °C).
- (3)
- The appearance of crystals, which is also confirmed by a decrease in the radius of gyration, as well as a decrease in the volume fraction of octamers (at T = 2.5 °C measured the next day).
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sussmann, R.S. CVD Diamond for Electronic Devices and Sensors; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; 571p. [Google Scholar]
- Ishihara, S.; Kobayashi, S.; Ukai, Y. High Quality Liquid Crystal Displays and Smart Devices. Volume 2: Surface Alignment, New Technologies and Smart Device Applications; The Institution of Engineering and Technology: London, UK, 2019; 383p. [Google Scholar]
- Kumar, N.; Suthar, B. Advances in Photonic Crystals and Devices; CRC Press: Boca Raton, FL, USA, 2019; 357p. [Google Scholar]
- Kolesnikov, N.; Borisenko, E. Modern Aspects of Bulk Crystal and Thin Film Preparation; InTech: London, UK, 2011; 618p. [Google Scholar]
- Dok, A.R.; Legat, T.; De Coene, Y.; Van der Veen, M.A. Nonlinear optical probes of nucleation and crystal growth: Recent progress and future prospects. J. Mater. Chem. C 2021, 9, 11553–11568. [Google Scholar] [CrossRef]
- Pina, C.M.; Becker, U.; Risthaus, P.; Bosbach, D.; Putnis, A. Molecular-scale mechanisms of crystal growth in barite. Nature 1998, 395, 483–486. [Google Scholar] [CrossRef] [Green Version]
- Velásquez-González, O.; Campos-Escamilla, C.; Flores-Ibarra, A.; Esturau-Escofet, N.; Arreguin-Espinosa, R.; Stojanoff, V.; Cuéllar-Cruz, M.; Moreno, A. Crystal Growth in Gels from the Mechanisms of Crystal Growth to Control of Polymorphism: New Trends on Theoretical and Experimental Aspects. Crystals 2019, 9, 443. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Lutsko, J.F.; Rimer, J.D.; Vekilov, P.G. Antagonistic cooperativity between crystal growth modifiers. Nature 2020, 577, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.F.; Xia, C.; Sai, Q.; Cui, H.; Pan, M.; Qi, H. Growth and fundamentals of bulk β-Ga2O3 single crystals. J. Semicond. 2019, 40, 011801. [Google Scholar] [CrossRef]
- Chen, D.; Wang, B.; Wang, H.; Zheng, L.; Zhang, H.; Qi, H.; Shao, J. Rapid Growth of a Cuboid DKDP (KDxH2−XPO4) Crystal. Cryst. Growth Des. 2019, 19, 2746–2750. [Google Scholar] [CrossRef]
- Phelps, P.R.; Lee, C.-T.A.; Morton, D.M. Episodes of fast crystal growth in pegatites. Nat. Commun. 2020, 11, 1. [Google Scholar] [CrossRef]
- Sasaki, T.; Yokotani, A. Growth of large KDP crystals for laser fusion experiments. J. Cryst. Growth 1990, 99, 820–826. [Google Scholar] [CrossRef]
- Schreiber, R.E.; Houben, L.; Wolf, S.G.; Leitus, G.; Lang, Z.-L.; Carbó, J.J.; Poblet, J.M.; Neumann, R. Real-time molecular scale observation of crystal formation. Nat. Chem. 2017, 9, 369–373. [Google Scholar] [CrossRef]
- Ilyushin, G.D.; Blatov, V.A. Combinatorial and topological modeling of cluster self-assembly of the crystal structure of zeolites. Crystallogr. Rep. 2015, 60, 453–465. [Google Scholar] [CrossRef]
- Gebauer, D.; Kellermeier, M.; Gale, J.D.; Bergstro, L. Pre-nucleation clusters as solute precursors in crystallization. Chem. Soc. Rev. 2014, 43, 2348–2371. [Google Scholar] [CrossRef] [Green Version]
- Askhabov, A.M. Cluster (quatarone) self-organization of matter at the nanoscale level and the formation of crystalline and non-crystalline materials. Zap. Ross. Mineral. O-va 2004, 133, 108–123. [Google Scholar]
- Kovalchuk, M.V.; Blagov, A.E.; Dyakova, Y.A.; Gruzinov, A.Y.; Marchenkova, M.A.; Peters, G.S.; Pisarevsky, Y.V.; Timofeev, V.I.; Volkov, V.V. Investigation of the Initial Crystallization Stage in Lysozyme Solutions by Small-Angle X-ray Scattering. Cryst. Growth Des. 2016, 16, 1792–1797. [Google Scholar] [CrossRef]
- Boikova, A.S.; Dyakova, Y.A.; Ilina, K.B.; Konarev, P.V.; Kryukova, A.E.; Kuklin, A.I.; Marchenkova, M.A.; Nabatov, B.V.; Blagov, A.E.; Pisarevsky, Y.V.; et al. Octamer Formation in lysozyme solutions at the initial crystallization stage detected by small-angle neutron scattering. Acta Cryst. D 2017, 73, 591–599. [Google Scholar] [CrossRef]
- Dyakova, Y.A.; Ilina, K.B.; Konarev, P.V.; Kryukova, A.E.; Marchenkova, M.A.; Blagov, A.E.; Volkov, V.V.; Pisarevsky, Y.V.; Kovalchuk, M.V. Small-angle X-ray scattering study of conditions for the formation of growth units of protein crystals in lysozyme solutions. Crystallogr. Rep. 2017, 62, 364–369. [Google Scholar] [CrossRef]
- Marchenkova, M.A.; Volkov, V.V.; Blagov, A.E.; Dyakova, Y.A.; Ilina, K.B.; Tereschenko, E.Y.; Timofeev, V.I.; Pisarevsky, Y.V.; Kovalchuk, M.V. In situ study of the state of lysozyme molecules at the very early stage of the crystallization process by small-angle X-ray scattering. Crystallogr. Rep. 2016, 61, 5–10. [Google Scholar] [CrossRef]
- Ten Wolde, T.; Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 1997, 77, 1975–1978. [Google Scholar] [CrossRef] [Green Version]
- Galkin, O.; Vekilov, P.G. Control of protein crystal nucleation around the metastable liquid–liquid phase boundary. Proc. Natl. Acad. Sci. USA 2000, 97, 6277–6281. [Google Scholar] [CrossRef] [Green Version]
- Vekilov, P.G. Nonclassical nucleation. ACS Symp. Ser. Am. Chem. Soc. 2020, 1358, 19–46. [Google Scholar]
- Kovalchuk, M.V.; Alekseeva, O.A.; Blagov, A.E.; Ilyushin, G.D.; Il’ina, K.B.; Konarev, P.V.; Lomonov, V.A.; Pisarevsky, Y.V.; Peters, G.S. Investigation of the Structure of Crystal-Forming Solutions of Potassium Dihydrogen Phosphate K(H2PO4) (KDP type) on the Basis of Modeling Precursor Clusters and According to Small-Angle X-Ray Scattering Data. Crystallogr. Rep. 2019, 64, 6–10. [Google Scholar] [CrossRef]
- Li, D.; Bai, R.; Huo, Z. EDTA and kKCI Doped KDP Solution and Thermodynamics Principle of Crystallization Process. Therm. Sci. Eng. 2018, 1, 361. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Wang, D.; Cui, D.; Shen, C.; Xu, M.; Meng, F.; Yao, S.; Wang, S. Influence of agitation intensity on solution stability for rapidly grown KDP crystal through theoretical and experimental research. Mater. Today Commun. 2020, 24, 101007. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, Y.; Tie, G.; Hu, H. Effects of temperature on the removal efficiency of KDP crystal during the process of magnetorheological water-dissolution polishing. Appl. Opt. 2016, 55, 8308–8315. [Google Scholar] [CrossRef] [PubMed]
- Joop, H.; Sefcik, J. The Handbook of Continuous Crystallization; The Royal Society of Chemistry: London, UK, 2020; pp. 1–50. [Google Scholar]
- Diao, Y.; Myerson, A.S.; Hatton, T.A.; Trout, B.L. Surface design for controlled crystallization: The role of surface chemistry and nanoscale pores in heterogeneous nucleation. Langmuir 2011, 27, 5324–5334. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.S.; Zakharchenko, O.A.; Konarev, P.V.; Karmazikov, Y.V.; Smirnov, M.A.; Zabelin, A.V.; Mukhamedzhanov, E.H.; Veligzhanin, A.A.; Blagov, A.E.; Kovalchuk, M.V. The small-angle X-ray scattering beamline BioMUR at the Kurchatov synchrotron radiation source. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 945, 162–616. [Google Scholar] [CrossRef]
- Peters, G.S.; Gaponov, Y.A.; Konarev, P.V.; Marchenkova, M.A.; Ilina, K.B.; Volkov, V.V.; Pisarevsky, Y.V.; Kovalchuk, M.V. Upgrade of the BioMUR beamline at the Kurchatov synchrotron radiation source for serial small-angle X-ray scattering experiments in solutions. Nucl. Instrum. Methods Phys. Res. Sect. A 2022, 1025, 166–170. [Google Scholar] [CrossRef]
- Hammersley, A.P. FIT2D: An Introduction and Overview. European Synchrotron Radiation Facility Internal Report ESRF97HA02T 68 (1997). Available online: https://www.esrf.fr/computing/scientific/FIT2D/FIT2D_INTRO/fit2d.html (accessed on 23 November 2022).
- Konarev, P.V.; Volkov, V.V.; Sokolova, A.V.; Koch, M.H.J.; Svergun, D.I. A Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 2003, 36, 1277–1282. [Google Scholar] [CrossRef]
- Guinier, A. La diffraction des rayons X aux très petits angles: Application à l’étude de phénomènes ultramicroscopiques. Ann. Phys. 1939, 11, 161–237. [Google Scholar] [CrossRef]
- Bergerhoff, G.; Berndt, M.; Brandenburg, K. Evaluation of Crystallographic Data with the Program DIAMOND. J. Res. Natl. Inst. Stand. Technol. 1996, 101, 221–225. [Google Scholar] [CrossRef]
- Malakhova, L.F.; Furmanova, N.G.; Vilensky, A.I.; Grigorieva, M.S.; Simonov, V.I.; Rudneva, E.B.; Voloshin, A.E. Structural features of the KH2PO4: Cr single crystal. Crystallogr. Rep. 2009, 54, 211–218. [Google Scholar] [CrossRef]
- Svergun, D.; Barberato, C.; Koch, M.H. CRYSOL—A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 1995, 28, 768–773. [Google Scholar] [CrossRef]
- Stawski, T.M.; Benning, L.G. SAXS in inorganic and bioinspired research. Methods Enzymol. 2013, 532, 95–127. [Google Scholar]
- Zhou, R.-B.; Cao, H.-L.; Zhang, C.-Y.; Yin, D.-C. A review on recent advances for nucleants and nucleation in protein crystallization. CrystEngComm 2017, 19, 1143–1155. [Google Scholar] [CrossRef]
T, °C | χ2 | Fraction of Monomers, % | Fraction of Dimers, % | Fraction of Tetramers, % | Fraction of Octamers, % | Rg, Å |
---|---|---|---|---|---|---|
90 | 1.02 | 66.1 ± 1.1 | 0 | 0 | 33.9 ± 0.3 | 3.15 ± 0.05 |
80 | 0.90 | 69.6 ± 0.9 | 0 | 0 | 30.4 ± 0.2 | 3.13 ± 0.04 |
70 | 0.96 | 63.6 ± 1.0 | 0 | 0 | 36.4 ± 0.3 | 3.20 ± 0.04 |
60 | 1.02 | 57.4 ± 0.9 | 0 | 0 | 42.6 ± 0.3 | 3.30 ± 0.05 |
50 | 1.5 | 55.8 ± 1.1 | 0 | 0 | 44.2 ± 0.4 | 3.51 ± 0.07 |
40 | 1.2 | 50.8 ± 0.8 | 0 | 0 | 49.2 ± 0.3 | 3.40 ± 0.06 |
30 | 1.14 | 45.8 ± 0.6 | 0 | 0 | 54.2 ± 0.4 | 3.40 ± 0.05 |
20 | 1.5 | 43.9 ± 0.7 | 0 | 0 | 56.1 ± 0.6 | 3.70 ± 0.07 |
10 | 1.32 | 34.4 ± 0.4 | 0 | 0 | 65.6 ± 0.6 | 3.65 ± 0.06 |
5 | 1.38 | 27.5 ± 0.5 | 0 | 0 | 72.5 ± 0.6 | 3.75 ± 0.07 |
2.5 | 1.38 | 22.0 ± 0.5 | 0 | 0 | 78.0 ± 0.6 | 3.63 ± 0.06 |
2.5 * | 0.90 | 30.0 ± 0.5 | 0 | 0 | 70.0 ± 0.6 | 3.67 ± 0.06 |
T, °C | χ2 | Fraction of Spheres, % | Fraction of Ellipsoids, % | Fraction of Octamers, % |
---|---|---|---|---|
90 | 1.42 | 55.0 ± 1.3 | 12.0 ± 0.5 | 33.0 ± 0.8 |
80 | 1.35 | 54.0 ± 1.4 | 13.0 ± 0.4 | 33.0 ± 0.8 |
70 | 1.46 | 54.0 ± 1.3 | 13.0 ± 0.5 | 32.0 ± 0.8 |
60 | 1.14 | 59.0 ± 1.5 | 9.0 ± 0.4 | 32.0 ± 0.8 |
50 | 1.10 | 53.0 ± 1.3 | 10.0 ± 0.5 | 37.0 ± 0.7 |
40 | 1.44 | 50.0 ± 1.2 | 10.0 ± 0.5 | 40.0 ± 0.8 |
30 | 1.08 | 49.0 ± 1.2 | 9.0 ± 0.5 | 42.0 ± 0.7 |
20 | 1.02 | 47.0 ± 1.1 | 9.0 ± 0.4 | 44.0 ± 0.7 |
10 | 1.05 | 43.0 ± 1.0 | 8.0 ± 0.4 | 49.0 ± 0.8 |
5 | 1.38 | 44.0 ± 1.0 | 6.0 ± 0.3 | 50.0 ± 0.8 |
2.5 | 1.07 | 45.0 ± 1.1 | 5.0 ± 0.3 | 50.0 ± 0.8 |
2.5 * | 1.40 | 46.0 ± 1.0 | 6.0 ± 0.3 | 48.0 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukhanov, A.E.; Ilina, K.B.; Konarev, P.V.; Peters, G.S.; Pisarevsky, Y.V.; Smirnova, E.S.; Alekseeva, O.A.; Kovalchuk, M.V. Temperature Behavior of Precursor Clusters at the Pre-Crystallization Phase of K(H2PO4) Studied by SAXS. Crystals 2023, 13, 26. https://doi.org/10.3390/cryst13010026
Sukhanov AE, Ilina KB, Konarev PV, Peters GS, Pisarevsky YV, Smirnova ES, Alekseeva OA, Kovalchuk MV. Temperature Behavior of Precursor Clusters at the Pre-Crystallization Phase of K(H2PO4) Studied by SAXS. Crystals. 2023; 13(1):26. https://doi.org/10.3390/cryst13010026
Chicago/Turabian StyleSukhanov, Andrey E., Kseniia B. Ilina, Petr V. Konarev, Georgy S. Peters, Yury V. Pisarevsky, Ekaterina S. Smirnova, Olga A. Alekseeva, and Mikhail V. Kovalchuk. 2023. "Temperature Behavior of Precursor Clusters at the Pre-Crystallization Phase of K(H2PO4) Studied by SAXS" Crystals 13, no. 1: 26. https://doi.org/10.3390/cryst13010026
APA StyleSukhanov, A. E., Ilina, K. B., Konarev, P. V., Peters, G. S., Pisarevsky, Y. V., Smirnova, E. S., Alekseeva, O. A., & Kovalchuk, M. V. (2023). Temperature Behavior of Precursor Clusters at the Pre-Crystallization Phase of K(H2PO4) Studied by SAXS. Crystals, 13(1), 26. https://doi.org/10.3390/cryst13010026