New Spin on Metal-Insulator Transitions
Funding
Data Availability Statement
Conflicts of Interest
References
- Si, L.; Worm, P.; Held, K. Fingerprints of Topotactic Hydrogen in Nickelate Superconductors. Crystals 2022, 12, 656. [Google Scholar] [CrossRef]
- Kawasugi, Y.; Yamamoto, H.M. Simultaneous Control of Bandfilling and Bandwidth in Electric Double-Layer Transistor Based on Organic Mott Insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Crystals 2022, 12, 42. [Google Scholar] [CrossRef]
- Matsumura, Y.; Imajo, S.; Yamashita, S.; Akutsu, H.; Nakazawa, Y. Electronic Heat Capacity and Lattice Softening of Partially Deuterated Compounds of κ-(BEDT-TTF)2Cu[N(CN)2]Br. Crystals 2022, 12, 2. [Google Scholar] [CrossRef]
- Pustogow, A.; Dizdarevic, D.; Erfort, S.; Iakutkina, O.; Merkl, V.; Untereiner, G.; Dressel, M. Tuning Charge Order in (TMTTF)2X by Partial Anion Substitution. Crystals 2021, 11, 1545. [Google Scholar] [CrossRef]
- Ihara, Y.; Imajo, S. Superconductivity and Charge Ordering in BEDT-TTF Based Organic Conductors with β″-Type Molecular Arrangement. Crystals 2022, 12, 711. [Google Scholar] [CrossRef]
- Sugiura, S.; Akutsu, H.; Nakazawa, Y.; Terashima, T.; Yasuzuka, S.; Schlueter, J.A.; Uji, S. Fermi Surface Structure and Isotropic Stability of Fulde-Ferrell-Larkin-Ovchinnikov Phase in Layered Organic Superconductor β″-(BEDT-TTF)2SF5CH2CF2SO3. Crystals 2021, 11, 1525. [Google Scholar] [CrossRef]
- Imajo, S.; Kindo, K. The FFLO State in the Dimer Mott Organic Superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. Crystals 2021, 11, 1358. [Google Scholar] [CrossRef]
- Riedl, K.; Gati, E.; Valentí, R. Ingredients for Generalized Models of κ-Phase Organic Charge-Transfer Salts: A Review. Crystals 2022, 12, 1689. [Google Scholar] [CrossRef]
- Tan, Y.; Dobrosavljević, V.; Rademaker, L. How to Recognize the Universal Aspects of Mott Criticality? Crystals 2022, 12, 932. [Google Scholar] [CrossRef]
- Walker, N.; Kellar, S.; Zhang, Y.; Tam, K.M.; Moreno, J. Neural Network Solver for Small Quantum Clusters. Crystals 2022, 12, 1269. [Google Scholar] [CrossRef]
- Tam, K.M.; Terletska, H.; Berlijn, T.; Chioncel, L.; Moreno, J. Real Space Quantum Cluster Formulation for the Typical Medium Theory of Anderson Localization. Crystals 2021, 11, 1282. [Google Scholar] [CrossRef]
- Ito, H.; Matsuno, M.; Katagiri, S.; Yoshina, S.K.; Takenobu, T.; Ishikawa, M.; Otsuka, A.; Yamochi, H.; Yoshida, Y.; Saito, G.; et al. Metallic Conduction and Carrier Localization in Two-Dimensional BEDO-TTF Charge-Transfer Solid Crystals. Crystals 2022, 12, 22. [Google Scholar] [CrossRef]
- Ganter, O.; Feeny, K.; Brooke-deBock, M.; Winter, S.M.; Agosta, C.C. A Database for Crystalline Organic Conductors and Superconductors. Crystals 2022, 12, 919. [Google Scholar] [CrossRef]
- Novosel, N.; Rivas Góngora, D.; Jagličić, Z.; Tafra, E.; Basletić, M.; Hamzić, A.; Klaser, T.; Skoko, Ž.; Salamon, K.; Kavre Piltaver, I.; et al. Grain-Size-Induced Collapse of Variable Range Hopping and Promotion of Ferromagnetism in Manganite La0.5Ca0.5MnO3. Crystals 2022, 12, 724. [Google Scholar] [CrossRef]
- Iakutkina, O.; Rosslhuber, R.; Kawamoto, A.; Dressel, M. Dielectric Anomaly and Charge Fluctuations in the Non-Magnetic Dimer Mott Insulator λ-(BEDT-STF)2GaCl4. Crystals 2021, 11, 1031. [Google Scholar] [CrossRef]
- Hashimoto, K.; Kobayashi, R.; Ohkura, S.; Sasaki, S.; Yoneyama, N.; Suda, M.; Yamamoto, H.M.; Sasaki, T. Optical Conductivity Spectra of Charge-Crystal and Charge-Glass States in a Series of θ-Type BEDT-TTF Compounds. Crystals 2022, 12, 831. [Google Scholar] [CrossRef]
- Kato, R.; Uebe, M.; Fujiyama, S.; Cui, H. A Discrepancy in Thermal Conductivity Measurement Data of Quantum Spin Liquid β′-EtMe3Sb[Pd(dmit)2]2 (dmit = 1,3-Dithiol-2-thione-4,5-dithiolate). Crystals 2022, 12, 102. [Google Scholar] [CrossRef]
- Taupin, M.; Paschen, S. Are Heavy Fermion Strange Metals Planckian? Crystals 2022, 12, 251. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pustogow, A. New Spin on Metal-Insulator Transitions. Crystals 2023, 13, 64. https://doi.org/10.3390/cryst13010064
Pustogow A. New Spin on Metal-Insulator Transitions. Crystals. 2023; 13(1):64. https://doi.org/10.3390/cryst13010064
Chicago/Turabian StylePustogow, Andrej. 2023. "New Spin on Metal-Insulator Transitions" Crystals 13, no. 1: 64. https://doi.org/10.3390/cryst13010064
APA StylePustogow, A. (2023). New Spin on Metal-Insulator Transitions. Crystals, 13(1), 64. https://doi.org/10.3390/cryst13010064