Graphene Production and Biomedical Applications: A Review
Abstract
:1. Introduction
2. Graphene Production Techniques
3. Application of Graphene
3.1. Biosensors
3.2. Tissue Engineering
3.3. Drug Delivery
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakrabarty, N.; Chakraborty, A.K.; Kumar, H. Nickel-Hydroxide-Nanohexagon-Based High-Performance Electrodes for Supercapacitors: A Systematic Investigation on the Influence of Six Different Carbon Nanostructures. J. Phys. Chem. C 2019, 123, 29104–29115. [Google Scholar] [CrossRef]
- Meng, X.; Hou, L.; Jin, H.; Li, W.; Wang, S.; Wang, Z.; An, J.; Wen, C.; Ji, G.; Xu, X.; et al. Study on Corrosion Protection Properties of PANI/ZnO/Zn/Graphene Coating on Aluminum Alloy. Diam. Relat. Mater. 2023, 136, 110067. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Abergel, D.S.L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of Graphene: A Theoretical Perspective. Adv. Phys. 2010, 59, 261–482. [Google Scholar] [CrossRef]
- Mohan, V.B.; Lau, K.; Hui, D.; Bhattacharyya, D. Graphene-Based Materials and Their Composites: A Review on Production, Applications and Product Limitations. Compos. Part B Eng. 2018, 142, 200–220. [Google Scholar] [CrossRef]
- Mbayachi, V.B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E.R.; khan, A.U. Graphene Synthesis, Characterization and Its Applications: A Review. Results Chem. 2021, 3, 100163. [Google Scholar] [CrossRef]
- Shahdeo, D.; Roberts, A.; Abbineni, N.; Gandhi, S. Chapter Eight—Graphene Based Sensors. In Comprehensive Analytical Chemistry; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 91, pp. 175–199. [Google Scholar]
- Bose, S.; Kuila, T.; Kim, N.H.; Lee, J.H. 4—Graphene Produced by Electrochemical Exfoliation. In Graphene: Properties, Preparation, Characterisation and Devices; Skákalová, V., Kaiser, A.B., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 81–98. [Google Scholar]
- Lin, L.P.; Tan, M.T.T. Biosensors for the Detection of Lung Cancer Biomarkers: A Review on Biomarkers, Transducing Techniques and Recent Graphene-Based Implementations. Biosens. Bioelectron. 2023, 237, 115492. [Google Scholar] [CrossRef]
- Kumar, Y.; Sahoo, S.; Chakraborty, A.K. Mechanical Properties of Graphene, Defective Graphene, Multilayer Graphene and SiC-Graphene Composites: A Molecular Dynamics Study. Phys. B Condens. Matter 2021, 620, 413250. [Google Scholar] [CrossRef]
- Li, N.; Li, D.; Zhen, Z.; Zhang, R.; Mu, R.; Xu, Z.; He, L. Nucleation and Growth of Graphene at Different Temperatures by Plasma Enhanced Chemical Vapor Deposition. Mater. Today Commun. 2023, 36, 106568. [Google Scholar] [CrossRef]
- Kenry; Lee, W.C.; Loh, K.P.; Lim, C.T. When Stem Cells Meet Graphene: Opportunities and Challenges in Regenerative Medicine. Biomaterials 2018, 155, 236–250. [Google Scholar] [CrossRef]
- Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological Interactions of Graphene-Family Nanomaterials: An Interdisciplinary Review. Chem. Res. Toxicol. 2012, 25, 15–34. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology. Trends Biotechnol. 2011, 29, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Tale, B.; Nemade, K.R.; Tekade, P. V Graphene Based Nano-Composites for Efficient Energy Conversion and Storage in Solar Cells and Supercapacitors: A Review. Polym. Technol. Mater. 2021, 60, 784–797. [Google Scholar] [CrossRef]
- Raslan, A.; Saenz del Burgo, L.; Ciriza, J.; Pedraz, J.L. Graphene Oxide and Reduced Graphene Oxide-Based Scaffolds in Regenerative Medicine. Int. J. Pharm. 2020, 580, 119226. [Google Scholar] [CrossRef]
- Arshad, F.; Nabi, F.; Iqbal, S.; Khan, R.H. Applications of Graphene-Based Electrochemical and Optical Biosensors in Early Detection of Cancer Biomarkers. Colloids Surf. B Biointerfaces 2022, 212, 112356. [Google Scholar] [CrossRef]
- Ndagijimana, P.; Rong, H.; Ndokoye, P.; Mwizerwa, J.P.; Nkinahamira, F.; Luo, S.; Guo, D.; Cui, B. A Review on Activated Carbon/Graphene Composite-Based Materials: Synthesis and Applications. J. Clean. Prod. 2023, 417, 138006. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, J.; Liu, X.; Li, B.; Wang, X.; Tang, S.; Meng, Q.; Li, Y.; Shi, C.; Hu, R.; et al. Graphene Quantum Dots with Controllable Surface Oxidation, Tunable Fluorescence and up-Conversion Emission. RSC Adv. 2012, 2, 2717–2720. [Google Scholar] [CrossRef]
- Hulagabali, M.M.; Vesmawala, G.R.; Patil, Y.D. Synthesis, Characterization, and Application of Graphene Oxide and Reduced Graphene Oxide and Its Influence on Rheology, Microstructure, and Mechanical Strength of Cement Paste. J. Build. Eng. 2023, 71, 106586. [Google Scholar] [CrossRef]
- Dorri Moghadam, A.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene—A Review. Compos. Part B Eng. 2015, 77, 402–420. [Google Scholar] [CrossRef]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent Advances in Graphene Based Polymer Composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Schniepp, H.C.; Li, J.-L.; McAllister, M.J.; Sai, H.; Herrera-Alonso, M.; Adamson, D.H.; Prud’homme, R.K.; Car, R.; Saville, D.A.; Aksay, I.A. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B 2006, 110, 8535–8539. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; et al. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon N. Y. 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Sui, X.; Riaz, M.A.; Xu, M.; Wei, L.; Chen, Y. Synthesis of Graphene Materials by Electrochemical Exfoliation: Recent Progress and Future Potential. Carbon Energy 2019, 1, 173–199. [Google Scholar] [CrossRef]
- Geng, D.; Wang, H.; Yu, G. Graphene Single Crystals: Size and Morphology Engineering. Adv. Mater. 2015, 27, 2821–2837. [Google Scholar] [CrossRef]
- Frank, O.; Kalbac, M. 2—Chemical Vapor Deposition (CVD) Growth of Graphene Films. In Graphene: Properties, Preparation, Characterisation and Devices; Skákalová, V., Kaiser, A.B., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 27–49. [Google Scholar]
- Liu, L.; Zhou, H.; Cheng, R.; Chen, Y.; Lin, Y.-C.; Qu, Y.; Bai, J.; Ivanov, I.A.; Liu, G.; Huang, Y.; et al. A Systematic Study of Atmospheric Pressure Chemical Vapor Deposition Growth of Large-Area Monolayer Graphene. J. Mater. Chem. 2012, 22, 1498–1503. [Google Scholar] [CrossRef]
- Terasawa, T.; Saiki, K. Growth of Graphene on Cu by Plasma Enhanced Chemical Vapor Deposition. Carbon N. Y. 2012, 50, 869–874. [Google Scholar] [CrossRef]
- de Arruda, M.N.; Palley, B.F.; de Souza, G.F.; Lopez, L.; Pontes, M.A.P.; Fernandes, W.P.; Gandara, M.; Machado, F.B.C.; Ferrão, L.F.D.A.; Gonçalves, E.S. Physicochemical Characterization of a Low-Oxygen Composite Based on Chitosan and Electrochemically Exfoliated Graphene. Mater. Chem. Phys. 2023, 306, 128049. [Google Scholar] [CrossRef]
- Awasthi, G.; Mistry, K.; Jamnapara, N.; Salot, M.; Santhy, K.; Mandal, D.; Chaudhury, S.K. Effect of Stirring on Characteristics of Electrochemically Exfoliated Graphene. Materialia 2023, 30, 101818. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Liu, R.; Niu, Y. Synthesis of High-Quality Graphene by Electrochemical Anodic and Cathodic Co-Exfoliation Method. Chem. Eng. J. 2023, 461, 141985. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.V.S.; Kumar, M.; Arulananth, T.S.; Ravi, B.; Kumar, B.; Kiran Kumar, B. Graphene/ZnO Nanocomposite Based Optical Biosensors. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- O’Brien, C.; Varty, K.; Ignaszak, A. The Electrochemical Detection of Bioterrorism Agents: A Review of the Detection, Diagnostics, and Implementation of Sensors in Biosafety Programs for Class A Bioweapons. Microsyst. Nanoeng. 2021, 7, 16. [Google Scholar] [CrossRef]
- Narayanan, J.; Sharma, M.K.; Ponmariappan, S.; Sarita; Shaik, M.; Upadhyay, S. Electrochemical Immunosensor for Botulinum Neurotoxin Type-E Using Covalently Ordered Graphene Nanosheets Modified Electrodes and Gold Nanoparticles-Enzyme Conjugate. Biosens. Bioelectron. 2015, 69, 249–256. [Google Scholar] [CrossRef]
- Ashraf, G.; Aziz, A.; Iftikhar, T.; Zhong, Z.-T.; Asif, M.; Chen, W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. Biosensors 2022, 12, 1183. [Google Scholar] [CrossRef] [PubMed]
- Ansari, G.; Pal, A.; Srivastava, A.K.; Verma, G. Detection of Hemoglobin Concentration in Human Blood Samples Using a Zinc Oxide Nanowire and Graphene Layer Heterostructure Based Refractive Index Biosensor. Opt. Laser Technol. 2023, 164, 109495. [Google Scholar] [CrossRef]
- Soman, G.; Molahalli, V.; Hegde, G. Molecularly Imprinted Graphene Based Biosensor as Effective Tool for Electrochemical Sensing of Uric Acid. Sens. Int. 2023, 4, 100243. [Google Scholar] [CrossRef]
- Mubarakali, A.; Gopinath, S.; Parthasarathy, P.; Arun Kumar, U.; Alavudeen Basha, A. Highly Efficient and Sensitive Non-Enzymatic Glucose Biosensor Based on Flower-Shaped CuO-Colloid Nanoparticles Decorated with Graphene-Modified Nanocomposite Electrode. Measurement 2023, 217, 113145. [Google Scholar] [CrossRef]
- Li, B.; Wu, X.; Shi, C.; Dai, Y.; Zhang, J.; Liu, W.; Wu, C.; Zhang, Y.; Huang, X.; Zeng, W. Flexible Enzymatic Biosensor Based on Graphene Sponge for Glucose Detection in Human Sweat. Surf. Interfaces 2023, 36, 102525. [Google Scholar] [CrossRef]
- Pareek, S.; Jain, U.; Bharadwaj, M.; Saxena, K.; Roy, S.; Chauhan, N. An Ultrasensitive Electrochemical DNA Biosensor for Monitoring Human Papillomavirus-16 (HPV-16) Using Graphene Oxide/Ag/Au Nano-Biohybrids. Anal. Biochem. 2023, 663, 115015. [Google Scholar] [CrossRef]
- Bao, J.; Ding, K.; Zhu, Y. An Electrochemical Biosensor for Detecting DNA Methylation Based on AuNPs/RGO/g-C3N4 Nanocomposite. Anal. Biochem. 2023, 673, 115180. [Google Scholar] [CrossRef]
- Heyn, H.; Esteller, M. DNA Methylation Profiling in the Clinic: Applications and Challenges. Nat. Rev. Genet. 2012, 13, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Vacanti, J. Advances in Tissue Engineering. J. Pediatr. Surg. 2016, 51, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Elitok, M.S.; Gunduz, E.; Gurses, H.E.; Gunduz, M. Chapter 20—Tissue Engineering: Towards Development of Regenerative and Transplant Medicine. In Omics Technologies and Bio-Engineering: Towards Improving Quality of Life; Barh, D., Azevedo, V., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 471–495. [Google Scholar]
- Webber, M.J.; Khan, O.F.; Sydlik, S.A.; Tang, B.C.; Langer, R. A Perspective on the Clinical Translation of Scaffolds for Tissue Engineering. Ann. Biomed. Eng. 2015, 43, 641–656. [Google Scholar] [CrossRef]
- Ghosal, K.; Mondal, P.; Bera, S.; Ghosh, S. Graphene Family Nanomaterials- Opportunities and Challenges in Tissue Engineering Applications. FlatChem 2021, 30, 100315. [Google Scholar] [CrossRef]
- Gao, J.; Yu, X.; Wang, X.; He, Y.; Ding, J. Biomaterial–Related Cell Microenvironment in Tissue Engineering and Regenerative Medicine. Engineering 2022, 13, 31–45. [Google Scholar] [CrossRef]
- Cao, Z.; Bian, Y.; Hu, T.; Yang, Y.; Cui, Z.; Wang, T.; Yang, S.; Weng, X.; Liang, R.; Tan, C. Recent Advances in Two-Dimensional Nanomaterials for Bone Tissue Engineering. J. Mater. 2023, 9, 930–958. [Google Scholar] [CrossRef]
- Ma, R.; Sasaki, T. Two-Dimensional Oxide and Hydroxide Nanosheets: Controllable High-Quality Exfoliation, Molecular Assembly, and Exploration of Functionality. Acc. Chem. Res. 2015, 48, 136–143. [Google Scholar] [CrossRef]
- Deng, L.; Xu, Y.; Sun, C.; Yun, B.; Sun, Q.; Zhao, C.; Li, Z. Functionalization of Small Black Phosphorus Nanoparticles for Targeted Imaging and Photothermal Therapy of Cancer. Sci. Bull. 2018, 63, 917–924. [Google Scholar] [CrossRef]
- Makvandi, P.; Zarepour, A.; Zheng, X.; Agarwal, T.; Ghomi, M.; Sartorius, R.; Zare, E.N.; Zarrabi, A.; Wu, A.; Maiti, T.K.; et al. Non-Spherical Nanostructures in Nanomedicine: From Noble Metal Nanorods to Transition Metal Dichalcogenide Nanosheets. Appl. Mater. Today 2021, 24, 101107. [Google Scholar] [CrossRef]
- Tarhan, T.; Şen, Ö.; Ciofani, M.E.; Yılmaz, D.; Çulha, M. Synthesis and Characterization of Silver Nanoparticles Decorated Polydopamine Coated Hexagonal Boron Nitride and Its Effect on Wound Healing. J. Trace Elem. Med. Biol. 2021, 67, 126774. [Google Scholar] [CrossRef]
- Zhu, X.; Vo, C.; Taylor, M.; Smith, B.R. Non-Spherical Micro- and Nanoparticles in Nanomedicine. Mater. Horiz. 2019, 6, 1094–1121. [Google Scholar] [CrossRef]
- Ma, P.; Li, M.; Hu, J.; Li, D.; Tao, Y.; Xu, L.; Zhao, H.; Da, J.; Li, L.; Zhao, G.; et al. New Skin Tissue Engineering Scaffold with Sulfated Silk Fibroin/Chitosan/Hydroxyapatite and Its Application. Biochem. Biophys. Res. Commun. 2023, 640, 117–124. [Google Scholar] [CrossRef]
- Sharifi, S.; Ebrahimian-Hosseinabadi, M.; Dini, G.; Toghyani, S. Magnesium-Zinc-Graphene Oxide Nanocomposite Scaffolds for Bone Tissue Engineering. Arab. J. Chem. 2023, 16, 104715. [Google Scholar] [CrossRef]
- Wen, C.; Zhan, X.; Huang, X.; Xu, F.; Luo, L.; Xia, C. Characterization and Corrosion Properties of Hydroxyapatite/Graphene Oxide Bio-Composite Coating on Magnesium Alloy by One-Step Micro-Arc Oxidation Method. Surf. Coat. Technol. 2017, 317, 125–133. [Google Scholar] [CrossRef]
- Toghyani, S.; Khodaei, M. Fabrication and Characterization of Magnesium Scaffold Using Different Processing Parameters. Mater. Res. Express 2018, 5, 35407. [Google Scholar] [CrossRef]
- Seyedraoufi, Z.S.; Mirdamadi, S. In Vitro Biodegradability and Biocompatibility of Porous Mg-Zn Scaffolds Coated with Nano Hydroxyapatite via Pulse Electrodeposition. Trans. Nonferrous Met. Soc. China 2015, 25, 4018–4027. [Google Scholar] [CrossRef]
- Jugowiec, D.; Łukaszczyk, A.; Cieniek, Ł.; Kot, M.; Reczyńska, K.; Cholewa-Kowalska, K.; Pamuła, E.; Moskalewicz, T. Electrophoretic Deposition and Characterization of Composite Chitosan-Based Coatings Incorporating Bioglass and Sol-Gel Glass Particles on the Ti-13Nb-13Zr Alloy. Surf. Coat. Technol. 2017, 319, 33–46. [Google Scholar] [CrossRef]
- Kumar, S.; Deepak, V.; Kumari, M.; Dutta, P.K. Antibacterial Activity of Diisocyanate-Modified Chitosan for Biomedical Applications. Int. J. Biol. Macromol. 2016, 84, 349–353. [Google Scholar] [CrossRef]
- Valencia, A.M.; Valencia, C.H.; Zuluaga, F.; Grande-Tovar, C.D. Synthesis and Fabrication of Films Including Graphene Oxide Functionalized with Chitosan for Regenerative Medicine Applications. Heliyon 2021, 7, e07058. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Liu, L.; Yu, B.; Zhu, Q. Electrodeposition of Graphene Oxide-Hydroxyapatite Composite Coating on Titanium Substrate. Ceram. Int. 2023, 49, 9647–9656. [Google Scholar] [CrossRef]
- Fardi, S.R.; khorsand, H.; Askarnia, R.; Pardehkhorram, R.; Adabifiroozjaei, E. Improvement of Biomedical Functionality of Titanium by Ultrasound-Assisted Electrophoretic Deposition of Hydroxyapatite-Graphene Oxide Nanocomposites. Ceram. Int. 2020, 46, 18297–18307. [Google Scholar] [CrossRef]
- Erakovic, S.; Jankovic, A.; Tsui, G.C.P.; Tang, C.-Y.; Miskovic-Stankovic, V.; Stevanovic, T. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition. Int. J. Mol. Sci. 2014, 15, 12294–12322. [Google Scholar] [CrossRef] [PubMed]
- Bensalem, A.; Kucukosman, O.K.; Raszkiewicz, J.; Topkaya, F. Synthesis, Characterization, Bactericidal Activity, and Mechanical Properties of Hydroxyapatite Nano Powders Impregnated with Silver and Zinc Oxide Nanoparticles (Ag-ZnO-Hap). Ceram. Int. 2021, 47, 21319–21324. [Google Scholar] [CrossRef]
- Akao, M.; Aoki, H.; Kato, K. Mechanical Properties of Sintered Hydroxyapatite for Prosthetic Applications. J. Mater. Sci. 1981, 16, 809–812. [Google Scholar] [CrossRef]
- Ramadas, M.; Bharath, G.; Ponpandian, N.; Ballamurugan, A.M. Investigation on Biophysical Properties of Hydroxyapatite/Graphene Oxide (HAp/GO) Based Binary Nanocomposite for Biomedical Applications. Mater. Chem. Phys. 2017, 199, 179–184. [Google Scholar] [CrossRef]
- Liu, Y.; Dang, Z.; Wang, Y.; Huang, J.; Li, H. Hydroxyapatite/Graphene-Nanosheet Composite Coatings Deposited by Vacuum Cold Spraying for Biomedical Applications: Inherited Nanostructures and Enhanced Properties. Carbon N. Y. 2014, 67, 250–259. [Google Scholar] [CrossRef]
- Sánchez-Campos, D.; Peña-Juárez, M.G.; Salado-Leza, D.; Mendoza-Anaya, D.; Rodríguez-Lugo, V.; González-Calderón, J.A.; Pérez, E. A Non-Toxic Synergistic Antibacterial Platform Based on Green Silver Nanoparticles Deposited on Hydroxyapatite/Graphene Oxide Composites. Mater. Today Commun. 2023, 35, 106097. [Google Scholar] [CrossRef]
- Daulbayev, C.; Sultanov, F.; Korobeinyk, A.V.; Yeleuov, M.; Taurbekov, A.; Bakbolat, B.; Umirzakov, A.; Baimenov, A.; Daulbayev, O. Effect of Graphene Oxide/Hydroxyapatite Nanocomposite on Osteogenic Differentiation and Antimicrobial Activity. Surf. Interfaces 2022, 28, 101683. [Google Scholar] [CrossRef]
- Zhao, H.; Xing, H.; Lai, Q.; Zhao, Y.; Chen, Q.; Zou, B. Additive Manufacturing of Graphene Oxide/Hydroxyapatite Bioceramic Scaffolds with Reinforced Osteoinductivity Based on Digital Light Processing Technology. Mater. Des. 2022, 223, 111231. [Google Scholar] [CrossRef]
- Saharan, R.; Paliwal, S.K.; Tiwari, A.; Tiwari, V.; Singh, R.; Beniwal, S.K.; Dahiya, P.; Sagadevan, S. Exploring Graphene and Its Potential in Delivery of Drugs and Biomolecules. J. Drug Deliv. Sci. Technol. 2023, 84, 104446. [Google Scholar] [CrossRef]
- Safari, J.; Zarnegar, Z. Advanced Drug Delivery Systems: Nanotechnology of Health Design A Review. J. Saudi Chem. Soc. 2014, 18, 85–99. [Google Scholar] [CrossRef]
- Goodarzi, S.; Da Ros, T.; Conde, J.; Sefat, F.; Mozafari, M. Fullerene: Biomedical Engineers Get to Revisit an Old Friend. Mater. Today 2017, 20, 460–480. [Google Scholar] [CrossRef]
- Li, X.; Chen, A.; Liu, Y.; Li, L. Preparation and Rectal Administration of Hydroxybutyl Chitosan/Graphene Oxide Composite Thermosensitive Hydrogel. React. Funct. Polym. 2023, 189, 105608. [Google Scholar] [CrossRef]
- Qureshi, M.A.U.R.; Arshad, N.; Rasool, A. Graphene Oxide Reinforced Biopolymeric (Chitosan) Hydrogels for Controlled Cephradine Release. Int. J. Biol. Macromol. 2023, 242, 124948. [Google Scholar] [CrossRef] [PubMed]
- Rajaei, M.; Rashedi, H.; Yazdian, F.; Navaei-Nigjeh, M.; Rahdar, A.; Díez-Pascual, A.M. Chitosan/Agarose/Graphene Oxide Nanohydrogel as Drug Delivery System of 5-Fluorouracil in Breast Cancer Therapy. J. Drug Deliv. Sci. Technol. 2023, 82, 104307. [Google Scholar] [CrossRef]
- Dolatkhah, M.; Hashemzadeh, N.; Barar, J.; Adibkia, K.; Aghanejad, A.; Barzegar-Jalali, M.; Omidi, Y. Graphene-Based Multifunctional Nanosystems for Simultaneous Detection and Treatment of Breast Cancer. Colloids Surf. B Biointerfaces 2020, 193, 111104. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA. Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef]
- Matiyani, M.; Rana, A.; Karki, N.; Garwal, K.; Pal, M.; Sahoo, N.G. Development of Multi-Functionalized Graphene Oxide Based Nanocarrier for the Delivery of Poorly Water Soluble Anticancer Drugs. J. Drug Deliv. Sci. Technol. 2023, 83, 104412. [Google Scholar] [CrossRef]
- Mohammed-Ahmed, H.K.; Nakipoglu, M.; Tezcaner, A.; Keskin, D.; Evis, Z. Functionalization of Graphene Oxide Quantum Dots for Anticancer Drug Delivery. J. Drug Deliv. Sci. Technol. 2023, 80, 104199. [Google Scholar] [CrossRef]
- Seyyedi Zadeh, E.; Ghanbari, N.; Salehi, Z.; Derakhti, S.; Amoabediny, G.; Akbari, M.; Asadi Tokmedash, M. Smart PH-Responsive Magnetic Graphene Quantum Dots Nanocarriers for Anticancer Drug Delivery of Curcumin. Mater. Chem. Phys. 2023, 297, 127336. [Google Scholar] [CrossRef]
- Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene Quantum Dots for Cancer Targeted Drug Delivery. Int. J. Pharm. 2017, 518, 185–192. [Google Scholar] [CrossRef] [PubMed]
Natural Materials | Synthetic Polymers | Inorganic Material |
---|---|---|
collagens; hyaluronic acid; chondroitin sulfate; chitosan (CS); silk fibroin | polyethylene glycol (PEG); poly(lactic-co-glycolic acid) (PLGA); polycaprolactone (PCL); ultra-high molecular weight polyethylene (UHMWPE) | hydroxyapatite (HAp); bioglass; calcium phosphate cement (CPC) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malisz, K.; Świeczko-Żurek, B. Graphene Production and Biomedical Applications: A Review. Crystals 2023, 13, 1413. https://doi.org/10.3390/cryst13101413
Malisz K, Świeczko-Żurek B. Graphene Production and Biomedical Applications: A Review. Crystals. 2023; 13(10):1413. https://doi.org/10.3390/cryst13101413
Chicago/Turabian StyleMalisz, Klaudia, and Beata Świeczko-Żurek. 2023. "Graphene Production and Biomedical Applications: A Review" Crystals 13, no. 10: 1413. https://doi.org/10.3390/cryst13101413
APA StyleMalisz, K., & Świeczko-Żurek, B. (2023). Graphene Production and Biomedical Applications: A Review. Crystals, 13(10), 1413. https://doi.org/10.3390/cryst13101413