Griffinite, Al2TiO5: A New Oxide Mineral from Inclusions in Corundum Xenocrysts from the Mount Carmel Area, Israel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffin, W.L.; Gain, S.E.M.; Saunders, M.; Huang, J.-X.; Alard, O.; Toledo, V.; O’Reilly, S.Y. Immiscible metallic melts in the upper mantle beneath Mount Carmel, Israel: Silicides, phosphides and carbides. Am. Mineral. 2022, 107, 532–549. [Google Scholar] [CrossRef]
- Ma, C.; Bindi, L.; Cámara, F.; Toledo, V. Griffinite, IMA 2021-110, in: CNMNC Newsletter 66. Eur. J. Mineral. 2022, 34, 253–257. [Google Scholar]
- Ma, C.; Griffin, W.L.; Bindi, L.; Cámara, F.; Toledo, V. Magnéliite, IMA 2021-111, in CNMNC Newsletter 66. Miner. Mag. 2022, 86, 362. [Google Scholar]
- Ma, C.; Griffin, W.L.; Bindi, L.; Cámara, F.; Toledo, V. Ziroite, IMA 2022-013, in CNMNC Newsletter 68. Miner. Mag. 2022, 86, 854–855. [Google Scholar]
- Ma, C.; Griffin, W.L.; Bindi, L.; Cámara, F.; Toledo, V. Sassite, IMA 2022-014, in CNMNC Newsletter 68. Miner. Mag. 2022, 86, 855. [Google Scholar]
- Ma, C.; Griffin, W.L.; Bindi, L.; Cámara, F.; Toledo, V. Mizraite-(Ce), IMA 2022-027, in CNMNC Newsletter 68. Miner. Mag. 2022, 86, 857. [Google Scholar]
- Ma, C.; Griffin, W.L.; Bindi, L.; Cámara, F. Toledoite, IMA 2022-036, in CNMNC Newsletter 66. Miner. Mag. 2022, 86, 858. [Google Scholar]
- Ma, C.; Griffin, W.L.; Bindi, L.; Cámara, F.; Toledo, V. Yeite, IMA 2022-079, in CNMNC Newsletter 70. Miner. Mag. 2022, 87, 165. [Google Scholar]
- Yamaguchi, G. Studies on tiailite Al2O3.TiO2. J. Ceram. Soc. Jpn. 1944, 52, 6–7. [Google Scholar]
- Kalpaki, Y. Effect of TiO2 addition on Al2TiO5 (tialite) phase evolution of in situ MgAl2O4 formation zero cement castable (ZCC). Adv. Appl. Ceram. 2014, 113, 282–289. [Google Scholar] [CrossRef]
- Huang, Y.X.; Senos, A.M.R.; Baptista, J.L. Thermal and mechanical properties of aluminium titanate–mullite composites. J. Mater. Res. 2000, 15, 357–363. [Google Scholar] [CrossRef]
- Griffin, W.L.; Gain, S.E.M.; Bindi, L.; Toledo, V.; Cámara, F.; Saunders, M.; O’Reilly, S.Y. Carmeltazite, ZrAl2Ti4O11, a new mineral trapped in corundum from volcanic rocks of Mt Carmel, northern Israel. Minerals 2018, 8, 601–612. [Google Scholar] [CrossRef]
- Griffin, W.L.; Gain, S.E.M.; Adams, D.T.; Huang, J.-X.; Saunders, M.; Toledo, V.; Pearson, N.J.; O’Reilly, S.Y. First terrestrial occurrence of tistarite (Ti2O3): Ultra-low oxygen fugacity in the upper mantle beneath Mt Carmel, Israel. Geology 2016, 44, 815–818. [Google Scholar] [CrossRef]
- Griffin, W.L.; Gain, S.E.M.; Huang, J.-X.; Saunders, M.; Shaw, J.; Toledo, V.; O’Reilly, S.Y. A terrestrial magmatic hibonite-grossite-vanadium assemblage: Desilication and extreme reduction in a volcanic plumbing system, Mt Carmel, Israel. Am. Mineral. 2019, 104, 207–217. [Google Scholar] [CrossRef]
- Griffin, W.L.; Toledo, V.; O’Reilly, S.Y. Discussion of “Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags” by Litasov et al. Lithos 2019, 348–349, 105122. [Google Scholar] [CrossRef]
- Xiong, Q.; Griffin, W.L.; Huang, J.-X.; Gain, S.E.M.; Toledo, V.; Pearson, N.J.; O’Reilly, S.Y. Super-reduced mineral assemblages in “ophiolitic” chromitites and peridotites: The view from Mt. Carmel. Eur. J. Mineral. 2017, 29, 557–570. [Google Scholar] [CrossRef]
- Armstrong, J.T. CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal. 1995, 4, 177–200. [Google Scholar]
- Ma, C.; Rossman, G.R. Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California. Am. Mineral. 2008, 93, 154–157. [Google Scholar] [CrossRef]
- Ma, C.; Rossman, G.R. Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. Am. Mineral. 2009, 94, 841–844. [Google Scholar] [CrossRef]
- Chen, D.; Kuo, J.-C.; Wu, W.-T. Effect of microscopic parameters on EBSD spatial resolution. Ultramicroscopy 2011, 111, 1488–1494. [Google Scholar] [CrossRef]
- Austin, A.E.; Schwartz, C.M. The crystal structure of aluminium titanate. Acta Crystallogr. 1953, 6, 812–813. [Google Scholar] [CrossRef]
- Skala, R.D.; Li, D.; Low, I.M. Diffraction, structure and phase stability studies on aluminium titanate. J. Eur. Ceram. Soc. 2009, 29, 67–75. [Google Scholar] [CrossRef]
- Morosin, B.; Lynch, R.W. Structure studies on Al2TiO5 at room temperature and at 600 °C. Acta Crystallogr. 1972, B28, 1040–1046. [Google Scholar] [CrossRef]
- Krot, A.N.; Nagashima, K.; Rossman, G.R. Machiite, Al2Ti3O9, a new oxide mineral from the Murchison carbonaceous chondrite: A new ultra-refractory phase from the solar nebula. Am. Mineral. 2020, 105, 239–243. [Google Scholar] [CrossRef]
- Ohya, Y.; Kawauchi, Y.; Ban, T. Cation distribution of pseudobrookite-type titanates and their phase stability. J. Ceram. Soc. 2017, 125, 695–700. [Google Scholar] [CrossRef]
- Kato, E.; Daimon, K.; Kobayashi, Y. Decomposition temperature of β-Al2TiO5. J. Am. Ceram. Soc. 1980, 63, 355–356. [Google Scholar] [CrossRef]
- Lashkari, S.; Ebadzadeh, T. Microwave sintering of Al2(1−x)MgxTi(1+x)O5 ceramics obtained from mixture of nano-sized oxide powders. Ceram. Int. 2014, 40, 12669–12674. [Google Scholar] [CrossRef]
- Basnet, B.; Sarkar, N.; Park, J.G.; Mazumder, S.; Kim, I.J. Al2O3–TiO2/ZrO2–SiO2 based porous ceramics from particle-stabilized wet foam. J. Adv. Ceram. 2017, 6, 129–138. [Google Scholar] [CrossRef]
- Low, I.M.; Oo, Z.; O’Connor, B.H. Effect of atmospheres on the thermal stability of aluminium titanate. Phys. B Condens. Matter 2006, 385–386, 502–504. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Griffin, W.L.; Bindi, L.; Cámara, F.; Ma, C.; Gain, S.E.M.; Saunders, M.; Alard, O.; Huang, J.-X.; Shaw, J.; Meredith, C.; et al. Interactions of magmas and highly reduced fluids during intraplate volcanism, Mt Carmel, Israel: Implications for mantle redox states and global carbon cycles. Gondwana Res. 2023; in review. [Google Scholar]
- Griffin, W.L.; Gain, S.E.M.; Cámara, F.; Bindi, L.; Shaw, J.; Alard, O.; Saunders, M.; Huang, J.-X.; Toledo, V.; O’Reilly, S.Y. Extreme reduction: Mantle-derived oxide xenoliths from a hydrogen-rich environment. Lithos 2020, 358, 105404. [Google Scholar] [CrossRef]
- Bindi, L.; Cámara, F.; Griffin, W.L.; Huang, J.-X.; Gain, S.E.M.; Toledo, V.; O’Reilly, S.Y. Discovery of the first natural hydride. Am. Miner. 2019, 104, 611–614. [Google Scholar] [CrossRef]
- Bindi, L.; Cámara, F.; Gain, S.E.M.; Griffin, W.L.; Huang, J.-X.; Saunders, M.; Toledo, V. Kishonite, VH2, and oreillyite, Cr2N, two new minerals from the corundum xenocrysts of Mt Carmel, Northern Israel. Minerals 2020, 10, 1118. [Google Scholar] [CrossRef]
- Griffin, W.L.; Gain, S.E.M.; Saunders, M.; Cámara, F.; Bindi, L.; Spartà, D.; Toledo, V.; O’Reilly, S.Y. Cr2O3 in corundum: Ultra-high contents under reducing conditions. Am. Mineral. 2021, 106, 1420–1437. [Google Scholar] [CrossRef]
- Oliveira, B.B.; Griffin, W.L.; Gain, S.E.M.; Saunders, M.; Shaw, J.; Toledo, V.; Afonso, J.C.; O’Reilly, S.Y. Ti3+ in corundum: Tracing crystal growth in a highly reduced magma. Sci. Rep. 2021, 11, 2439. [Google Scholar] [CrossRef]
- Ma, C.; Cámara, F.; Bindi, L.; Toledo, V.; Griffin, W.L. First terrestrial occurrence of kaitianite (Ti3+2Ti4+O5) from the Upper Mantle beneath Mount Carmel, Israel. Minerals 2023, 13, 1097. [Google Scholar] [CrossRef]
Constituent (wt%) | Mean (n = 8) | Range | SD | Probe Standard |
---|---|---|---|---|
TiO2 | 44.41 | 44.15–44.71 | 0.24 | TiO2 |
Al2O3 | 55.13 | 54.90–55.34 | 0.18 | anorthite |
FeO | 0.47 | 0.40–0.58 | 0.05 | fayalite |
MgO | 0.37 | 0.36–0.40 | 0.02 | forsterite |
Total | 100.38 |
h | k | l | d (Ả) | Irel |
---|---|---|---|---|
0 | 0 | 2 | 4.825 | 1 |
0 | 2 | 0 | 4.720 | 77 |
0 | 2 | 1 | 4.240 | 2 |
0 | 2 | 2 | 3.374 | 24 |
1 | 1 | 0 | 3.347 | 100 |
1 | 1 | 1 | 3.163 | 39 |
0 | 2 | 3 | 2.658 | 90 |
0 | 0 | 4 | 2.413 | 1 |
1 | 3 | 0 | 2.364 | 13 |
0 | 4 | 0 | 2.360 | 1 |
1 | 1 | 3 | 2.319 | 15 |
0 | 2 | 4 | 2.148 | 26 |
1 | 3 | 2 | 2.123 | 6 |
0 | 4 | 2 | 2.120 | 17 |
0 | 4 | 3 | 1.903 | 57 |
2 | 0 | 0 | 1.790 | 55 |
0 | 2 | 5 | 1.786 | 5 |
1 | 3 | 4 | 1.688 | 44 |
2 | 2 | 0 | 1.674 | 9 |
1 | 1 | 5 | 1.672 | 1 |
1 | 5 | 0 | 1.670 | 2 |
0 | 0 | 6 | 1.608 | 21 |
2 | 2 | 2 | 1.581 | 5 |
1 | 5 | 2 | 1.578 | 19 |
0 | 6 | 0 | 1.573 | 8 |
0 | 6 | 1 | 1.553 | 7 |
0 | 2 | 6 | 1.522 | 10 |
0 | 6 | 2 | 1.496 | 1 |
1 | 3 | 5 | 1.495 | 7 |
0 | 4 | 5 | 1.494 | 1 |
2 | 2 | 3 | 1.485 | 32 |
1 | 5 | 3 | 1.482 | 26 |
1 | 1 | 6 | 1.450 | 4 |
2 | 0 | 4 | 1.438 | 1 |
2 | 4 | 0 | 1.426 | 1 |
2 | 2 | 4 | 1.375 | 11 |
1 | 5 | 4 | 1.373 | 8 |
2 | 4 | 2 | 1.368 | 8 |
1 | 3 | 6 | 1.330 | 7 |
0 | 2 | 7 | 1.323 | 4 |
2 | 4 | 3 | 1.304 | 30 |
1 | 1 | 7 | 1.275 | 13 |
2 | 2 | 5 | 1.265 | 3 |
1 | 7 | 0 | 1.262 | 1 |
1 | 7 | 1 | 1.251 | 14 |
1 | 7 | 2 | 1.221 | 10 |
0 | 6 | 5 | 1.220 | 3 |
2 | 0 | 6 | 1.196 | 14 |
3 | 1 | 0 | 1.184 | 4 |
2 | 6 | 0 | 1.182 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Cámara, F.; Toledo, V.; Bindi, L. Griffinite, Al2TiO5: A New Oxide Mineral from Inclusions in Corundum Xenocrysts from the Mount Carmel Area, Israel. Crystals 2023, 13, 1427. https://doi.org/10.3390/cryst13101427
Ma C, Cámara F, Toledo V, Bindi L. Griffinite, Al2TiO5: A New Oxide Mineral from Inclusions in Corundum Xenocrysts from the Mount Carmel Area, Israel. Crystals. 2023; 13(10):1427. https://doi.org/10.3390/cryst13101427
Chicago/Turabian StyleMa, Chi, Fernando Cámara, Vered Toledo, and Luca Bindi. 2023. "Griffinite, Al2TiO5: A New Oxide Mineral from Inclusions in Corundum Xenocrysts from the Mount Carmel Area, Israel" Crystals 13, no. 10: 1427. https://doi.org/10.3390/cryst13101427
APA StyleMa, C., Cámara, F., Toledo, V., & Bindi, L. (2023). Griffinite, Al2TiO5: A New Oxide Mineral from Inclusions in Corundum Xenocrysts from the Mount Carmel Area, Israel. Crystals, 13(10), 1427. https://doi.org/10.3390/cryst13101427