Carbon–Carbon Composite Metallic Alloy Joints and Corresponding Nanoscale Interfaces, a Short Review: Challenges, Strategies, and Prospects
Abstract
:1. Introduction
2. Difficulties in Brazing C/C Composites and Metals
2.1. Improving the Wettability
- (1)
- The surface of the C/C composites is pre-treated with a layer of active metallic elements’ powder by plating, sintering, or deposition, and then conventionally brazed. Kong [27] introduced a simple ammonium dichromate solution immersion method to synthesize copper wettable Cr3C2 coatings on and inside C/C preforms. The wetting angle of molten copper with C/C decreased from 140° to 60°, indicating a significant improvement in the wettability. Wenyan Zhou et al. [28] fabricated Mo2C layers on the entire inner surface of C/C preforms in molten salt (NaCl-KCl) with the addition of ammonium paramolybdate. An approximately 1 μm-thick Mo2C layer that uniformly covered the inner surface of the C/C preforms was obtained. The formation of the Mo2C layer shows a transformation from the non-wettable interface of Cu/C into the wettable interfaces Mo2C/C and Cu/Mo2C, respectively. Good interface bonding was observed between Mo2C/C and Cu/Mo2C.
- (2)
- An appropriate amount of the active metal element is added to the brazing material to make an active brazing material. The most commonly used active metallic element is titanium (Ti). This method is called active metal brazing. Huang Wu et al. [29] investigated the effect of Ti on improving the wettability of liquid Cu with C/C composites by using the sessile drop method. The wetting angle of Cu–10 wt% Ti dropped on the C/C composite at 1300 °C for 60 min was measured as ~70°, which was smaller than that of a Cu drop on the composite. This indicates that the addition of Ti can effectively improve the wettability of liquid Cu on a C/C composite.
2.2. Eliminating the Thermal Stresses
2.3. Suppressing the Generation of Brittle Phases
3. Brazing of C/C Composites and Metals
3.1. Brazing of C/C Composites with Copper and Copper Alloys
3.2. Brazing of C/C Composites to Titanium and Titanium Alloys
3.3. Brazing of C/C Composites to Nickel-Based Alloys
4. Summary
- (1)
- Surface treatment of C/C composites, such as coating, sintering, perforating, depositing SiC, etc., can improve the wettability of the base and brazing materials, and form a transition layer at the interface of the joint to prevent uneven thermal expansion and cracking.
- (2)
- The addition of some reinforcing phases, such as active elements and CNTs, to the brazing material can promote the diffusion of C/C composites into the brazing seam, produce diffuse particles, reduce the mismatch between the matrix and brazing seam of C/C composites, and relieve the residual stress.
- (3)
- A transition layer can be sandwiched between the base material and the intermediate layer to alleviate the difference in the degree of thermal expansion between the base material and the brazed seam.
- (4)
- New brazing materials can be developed, with promising applications, such as Fe-based brazing materials and high-entropy alloy brazing materials.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krenkel, W. Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Fitzer, E.; Manocha, L.M. Carbon Fibers and Carbon/Carbon Composites; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Wang, X.; Wang, X.; Liu, K.; Cao, H.; Su, Y. Effect of the CNTs into SiCp-Al interfacial micro-zones on ageing precipitation behavior, microstructure and mechanical properties of SiCp(CNT)/Al–Zn–Mg–Cu composites. Compos. Part B Eng. 2023, 259, 110708. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Cai, H.; Zhang, C.; Dan, C.; Shi, Q.; Wang, H.; Chen, Z. Enhanced precipitate strengthening in particulates reinforced Al–Zn–Mg–Cu composites via bimodal structure design and optimum aging strategy. Compos. Part B Eng. 2023, 260, 110772. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Li, W. Research Progress on C/C Composites for Aerospace Applications. Aerosp. Mater. Technol. 2022, 52, 1–12. [Google Scholar]
- Wang, F.; Chen, J.; Cui, H. Overview of C/C Composites Application for Nuclear Energy System. Nucl. Sci. Eng. 2020, 40, 1092–1103. [Google Scholar]
- Lan, F.T.; Li, K.Z.; Li, H.J.; He, Y.G.; Shen, X.T.; Cao, W.F. Joining of carbon/carbon composites for nuclear applications. J. Mater. Sci. 2009, 44, 3747–3750. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z.; Lu, Y.; Huang, H.; He, Z.; Dai, Z.; Xu, H. Development Strategy for Thorium Molten Salt Reactor Materials. Strateg. Study CAE 2019, 21, 29–38. [Google Scholar] [CrossRef]
- Warren, K.C.; Lopez-Anido, R.A.; Goering, J. Behavior of three-dimensional woven carbon composites in single-bolt bearing. Compos. Struct. 2015, 127, 175–184. [Google Scholar] [CrossRef]
- Kweon, J.H.; Jung, J.W.; Kim, T.H.; Choi, J.H.; Kim, D.H. Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding. Compos. Struct. 2006, 75, 192–198. [Google Scholar] [CrossRef]
- Yang, G. Research on High-Temperature Adhesion Process and Mechanism of Carbon Materials; Harbin Institute of Technology: Harbin, China, 2014. [Google Scholar]
- Rakesh, P.; Davim, J.P. Joining Processes for Dissimilar and Advanced Materials; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Zhang, J.; Luo, R.; Yang, C. A multi-wall carbon nanotube-reinforced high-temperature resistant adhesive for bonding carbon/carbon composites. Carbon 2012, 50, 4922–4925. [Google Scholar] [CrossRef]
- Baldan, A. Adhesion phenomena in bonded joints. Int. J. Adhes. Adhes. 2012, 38, 95–116. [Google Scholar] [CrossRef]
- Zhao, K. Research on Mechanism of Brzaing TC4 and C/C Composite with Carbon Fiber Reinforced Composite Filler; Harbin Institute of Technology: Harbin, China, 2020. [Google Scholar]
- Niu, H.; Zhao, Y.; Liu, D. Development of metalbrazing and carbon fiber reinforced composites. J. Chang. Univ. Technol. 2016, 37, 442–448. [Google Scholar]
- Shirvanimoghaddam, K.; Hamim, S.U.; Akbari, M.K.; Fakhrhoseini, S.M.; Khayyam, H.; Pakseresht, A.H.; Naebe, M. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Compos. Part A Appl. Sci. Manuf. 2017, 92, 70–96. [Google Scholar] [CrossRef]
- Guo, C.; Guo, L.; Li, H. Hot Pressing Joining of Carbon/Carbon Composites to Metal. Carbon Technol. 2009, 28, 27–30. [Google Scholar]
- Liu, D.; Zhao, K.; Song, Y.; Zhang, L.; Song, X.; Long, W. Effect of introducing carbon fiber into AgCuTi filler on interfacial microstructure and mechanical property of C/C-TC4 brazed joints. Mater. Charact. 2019, 157, 109890. [Google Scholar]
- Dadras, P.; Ngai, T.T.; Mehrotra, G.M. Joining of Carbon—Carbon Composites Using Boron and Titanium Disilicide Interlayers. J. Am. Ceram. Soc. 1997, 80, 125–132. [Google Scholar] [CrossRef]
- Xue, L.A.; Narasimhan, D. Joining of Rough Carbon-Carbon Composites with High Joint Strength. US5972157A, 26 October 1999. [Google Scholar]
- Zhang, Q. Research on Process of Brazing TC4 and C/C Composite with CNTs Reinforced Composite Filler; Harbin Institute of Technology: Harbin, China, 2019. [Google Scholar]
- Durodola, J.F.; Fellows, N.; Winfield, P.; Gerguri, S.; Maruyama, B. Continuously Reinforced Metal Matrix Composites. In Comprehensive Composite Materials; Elsevier: Amsterdam, The Netherlands, 2017; Volume 3, pp. 717–739. [Google Scholar]
- Chen, B.; Xiong, H.; Mao, W.; Li, X.H. Wettability of Several High-temperature Brazing Fillers on C/C Composites. J. Mater. Eng. 2008, 1, 25–29+37. [Google Scholar]
- Yu, Q.; Zhang, F.; Zhang, X.; Xia, L.H.; Zhou, X.G. Effect of the Ti content of Cu-Ti alloy on the wettability of C/C composites. Mater. Sci. Eng. Powder Metall. 2013, 18, 224–229. [Google Scholar]
- Fang, H.; Yu, G.; Xiao, P.; Xiong, X. Effect of active element on interface wettability and microstructure of NiAl-modified C/C composites prepared by infiltration. Rare Met. Mater. Eng. 2016, 45, 997–1002. [Google Scholar]
- Kong, B.; Ru, J.; Zhang, H.; Fan, T. Enhanced wetting and properties of carbon/carbon-Cu composites with Cr3C2 coatings by Cr-solution immersion method. J. Mater. Sci. Technol. 2018, 34, 458–465. [Google Scholar] [CrossRef]
- Zhou, W.; Yi, M.; Peng, K.; Ran, L.; Ge, Y. Preparation of a C/C–Cu composite with Mo2C coatings as a modification interlayer. Mater. Lett. 2015, 145, 264–268. [Google Scholar] [CrossRef]
- Wu, H.; Yi, M.; Ran, L. Improving the wettability between liquid Cu and carbon/carbon composite by addition of Ti. Mater. Res. Express 2019, 6, 125610. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Bao, J.; Yang, G. A novel active braze composition design route for C/C composite using Fe as active element. Carbon 2021, 181, 177–192. [Google Scholar] [CrossRef]
- Xu, H.; Shi, L.; Lu, C.; Li, H.; He, Y.; Chen, W.; Gao, Z. A novel joining of Cf/C composites using AlCoCrFeNi2.1 high-entropy brazing filler alloys. Mater. Charact. 2021, 179, 111368. [Google Scholar] [CrossRef]
- He, P.; Feng, J.; Qian, Y. Distributions of Residual Stresses in Diffusion Bond of Dissimilar Materials and Effect of Interlayer. Trans. China Weld. Inst. 2002, 23, 76–80. [Google Scholar]
- Levano Blanch, O.; Pope, J.; Violatos, I.; Rahimi, S.; Jackson, M. Residual Stress Distributions in Dissimilar Titanium Alloy Diffusion Bonds Produced from Powder Using Field-Assisted Sintering Technology (FAST-DB). Metall. Mater. Trans. A 2023, 54, 3578–3593. [Google Scholar] [CrossRef]
- Tian, X.; Qi, J.; Zhang, L.; Liang, Y. Brazing of C/C composite and GH99 superalloy Using BNi2 + TiH2 composite filler powder. Trans. China Weld. Inst. 2014, 35, 35–38+114–115. [Google Scholar]
- Guo, W.; Wang, L.; Zhu, Y.; Chu, P.K. Microstructure and mechanical properties of C/C composite/TC4 joint with inactive AgCu filler metal. Ceram. Int. 2015, 41, 7021–7027. [Google Scholar] [CrossRef]
- Yu, G.; Xiao, P.; Fang, H. Influence of adding Ti on molten NiAl intermetallic infiltration into C/C composites. Chin. J. Nonferrous Met. 2013, 23, 3316–3322. [Google Scholar]
- Yang, L.; Yi, M.; Ran, L. Joining of carbon/carbon composite using AgCuTi braze. Mater. Sci. Eng. Powder Metall. 2015, 20, 765–770. [Google Scholar]
- Gotoh, Y.; Okamura, H.; Kajiura, S.; Kumagai, M.; Ando, T.; Akiba, M.; Suzuki, T. Development and material testing of OF-Cu /DS-Cu/OF-Cu triplex tube (dispersion strengthened copper clad with oxygen free-copper) and trial fabrication of a vertical target mock-up for ITER divertor. J. Nucl. Mater. 1998, 258, 271–274. [Google Scholar] [CrossRef]
- Trester, P.W.; Valentine, P.G.; Johnson, W.R.; Chin, E.; Reis, E.E.; Colleraine, A.P. Tensile fracture characterization of braze joined copper-to-CFC coupon assemblies. J. Nucl. Mater. 1996, 233, 906–912. [Google Scholar] [CrossRef]
- Hussain, M.Z.; Xiong, J.; Li, J.; Siddique, F.; Zhang, L.J.; Raza, M.A.; Rathore, M.F. Structural characterization of a composite joint prepared during laser welding of Ti–22Al–27Nb intermetallic alloy with an interlayer of Cu-Hf-Ni-Ti-Zr high entropy bulk metallic glass. Compos. Part B Eng. 2022, 243, 110167. [Google Scholar] [CrossRef]
- Appendino, P.; Casalegno, V.; Ferraris, M.; Grattarola, M.; Merola, M.; Salvo, M. Joining of C/C composites to copper. Fusion Eng. Des. 2003, 66, 225–229. [Google Scholar] [CrossRef]
- Zhang, K.; Xia, L.; Zhang, F.; He, L. Active Brazing of C/C Composite to Copper by AgCuTi Filler Metal. Metall. Mater. Trans. A 2016, 47, 2162–2176. [Google Scholar] [CrossRef]
- Okamura, H.; Kajiura, S.J.; Akiba, M. Bonding between carbon fiber/carbon composite and copper alloy. Q. J. Jpn. Weld. Soc. 1996, 14, 39–46. [Google Scholar] [CrossRef]
- Singh, M.; Asthana, R.; Shpargel, T.P. Brazing of carbon–carbon composites to Cu-clad molybdenum for thermal management applications. Mater. Sci. Eng. A 2007, 452, 699–704. [Google Scholar] [CrossRef]
- Singh, M.; Asthana, R. Characterization of brazed joints of CC composite to Cu-clad-Molybdenum. Compos. Sci. Technol. 2008, 68, 3010–3019. [Google Scholar] [CrossRef]
- Salvo, M.; Casalegno, V.; Rizzo, S.; Smeacetto, F.; Ferraris, M.; Merola, M. One-step brazing process to join CFC composites to copper and copper alloy. J. Nucl. Mater. 2008, 374, 69–74. [Google Scholar] [CrossRef]
- Qin, Y.; Yu, Z. Effects of Brazing Parameters on Microstructures of C/C Composite/Cu/Mo/TC4 Brazed Joints. J. Mater. Eng. 2012, 2, 78–82. [Google Scholar]
- Qin, Y.; Feng, J. Active brazing carbon/carbon composite to TC4 with Cu and Mo composite interlayers. Mater. Sci. Eng. A 2009, 525, 181–185. [Google Scholar] [CrossRef]
- Singh, M.; Morscher, G.N.; Shpargel, T.P.; Asthana, R. Active metal brazing of titanium to high-conductivity carbon-based sandwich structures. Mater. Sci. Eng. A 2008, 498, 31–36. [Google Scholar] [CrossRef]
- Wang, H.; Cao, J.; Feng, J. Brazing mechanism and infiltration strengthening of CC composites to TiAl alloys joint. Scr. Mater. 2010, 63, 859–862. [Google Scholar] [CrossRef]
- Cao, J.; He, Z.; Qi, J.; Wang, H.; Feng, J. Brazing of C/C Composite to TiAl Alloy Using (Ti/Ni/Cu)f Multi-foil Filler. J. Mech. Eng. 2018, 54, 108–114. [Google Scholar] [CrossRef]
- Morscher, G.N.; Singh, M.; Shpargel, T.; Asthana, R. A simple test to determine the effectiveness of different braze compositions for joining Ti-tubes to C/C composite plates. Mater. Sci. Eng. A 2006, 418, 19–24. [Google Scholar] [CrossRef]
- Singh, M.; Shpargel, T.P.; Morscher, G.N.; Asthana, R. Active metal brazing and characterization of brazed joints in titanium to carbon–carbon composites. Mater. Sci. Eng. A 2005, 412, 123–128. [Google Scholar] [CrossRef]
- Ikeshoji, T.T.; Amanuma, T.; Suzumura, A.; Yamazaki, T. Shear Strength of Brazed Joint Between Titanium and C/C Composites with Various Cross-Ply Angles. J. Solid Mech. Mater. Eng. 2011, 5, 1022–1028. [Google Scholar] [CrossRef]
- Singh, M.; Asthana, R.; Shpargel, T.P. Brazing of ceramic-matrix composites to Ti and Hastealloy using Ni-base metallic glass interlayers. Mater. Sci. Eng. A 2008, 498, 19–30. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.; Zhao, K.; Song, Y.; Zhang, S.; Song, X. Effect of CNTs on microstructure and mechanical properties of TC4 and C/C composites brazed joint. Trans. China Weld. Inst. 2020, 41, 1–5+97. [Google Scholar]
- Jiao, J.; Zou, Q.; Ye, Y.; Xu, Z.; Sheng, L. Carbon fiber reinforced thermoplastic composites and TC4 alloy laser assisted joining with the metal surface laser plastic-covered method. Compos. Part B Eng. 2021, 213, 108738. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Huang, J.; Yu, R.; Yang, J.; Chen, S. Reactive composite brazing of C/C composite and GH3044 with Ag–Ti mixed powder filler material. Mater. Sci. Eng. A 2019, 759, 303–312. [Google Scholar] [CrossRef]
- Zhang, S.; Li, K.; Wang, J.; Song, X.R.; Guo, L.J. PTLP bonding C/C composites to super-alloy GH3044 with Ni/Ti interlayer. J. Solid Rocket. Technol. 2012, 35, 414–418. [Google Scholar]
- Zhang, X.; Shi, X.; Wang, J.; Li, H.J.; Li, K.Z. Brazing of C/C Composites and GH3044 Ni-Based Superalloy Using Ni71CrSi as the Interlayer. Mater. China 2013, 32, 665–675. [Google Scholar]
- Shi, X.; Jin, X.; Lin, H.; Jing, J.; Li, L.; Wang, C. Joining of SiC nanowires-toughened SiC coated C/C composites and nickel based superalloy (GH3044) using Ni71CrSi interlayer. J. Alloys Compd. 2017, 693, 837–842. [Google Scholar] [CrossRef]
- Shi, X.; Jin, X.; Yan, N.; Yang, L. Influence of micro-oxidation on joints of C/C composites and GH3044 for large-size aerospace parts. Acta Astronaut. 2017, 140, 478–484. [Google Scholar] [CrossRef]
- Guo, L.; Guo, C.; Li, H.; Kezhi, L. Mechanical Properties and Microstructure of the Joints between Carbon-Carbon Composites and Ni Based High Temperature Alloys. Rare Met. Mater. Eng. 2011, 40, 111–114. [Google Scholar]
- Feng, Z.; Gao, T.; Shao, T.; Guo, W.; Zhu, Y.; Qu, P. Brazing of C/C composite and Ni-based high temperature alloy GH3128. Trans. China Weld. Inst. 2015, 36, 105–108+118. [Google Scholar]
- Lingjun, G.; Hejun, L.; Chen, G.; Kezhi, L.; Tao, F. Joining of C/C Composites and GH3128 Ni-based Superalloy with Ni-Ti Mixed Powder as an Interlayer. Rare Met. Mater. Eng. 2011, 40, 2088–2091. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.; Ning, L. Microstructure and Property Analysis of the Vacuum Brazed Carbon-Carbon Composites and High Temperature Alloys Joint. Aerosp. Mater. Technol. 2015, 45, 69–72. [Google Scholar]
- Shi, J.M.; Zhang, L.X.; Tian, X.Y.; Li, H.W.; Feng, J.C. Vacuum brazing of the Cf/C composite and Ni base superalloy using MBF 20 filler. Vacuum 2018, 156, 427–433. [Google Scholar] [CrossRef]
- Shen, Y.; Li, Z.; Hao, C.; Zhang, J. A novel approach to brazing C/C composite to Ni-based superalloy using alumina interlayer. J. Eur. Ceram. Soc. 2012, 32, 1769–1774. [Google Scholar] [CrossRef]
- Guo, X.; Si, X.; Li, C.; Zhao, S.; Yang, B.; Qi, J.; Cao, J. Brazing C/C composites to DD3 alloy with a novel Ag–Cr active braze. Ceram. Int. 2022, 48, 15090–15097. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, H.; Guo, W.; Zhu, Y.; Cheng, Z.; Zhang, L.; Long, W. Microstructure and properties of the C/C-superalloy brazed joint by ni-based filler. Ceram. Int. 2022, 48, 12549–12558. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, X.; Tehranchi, A.; Hou, J.; Lu, W.; Hickel, T.; Zhang, D. Stacking faults in a mechanically strong Al(Mg)–Al3Mg2 composite. Compos. Part B Eng. 2022, 245, 110211. [Google Scholar] [CrossRef]
- Peng, X.; Peng, X.; Zhen, H.; Tian, L.; Wang, X.; Wang, K.; Xie, Y. A novel strategy to apply metallic nanoparticles to manufacture NiCrAl composite coatings smartly growing chromia and alumina. Compos. Part B Eng. 2022, 234, 109721. [Google Scholar] [CrossRef]
- Gilli, N.; Watts, J.; Fahrenholtz, W.G.; Sciti, D.; Silvestroni, L. Design of ultra-high temperature ceramic nano-composites from multi-scale length microstructure approach. Compos. Part B Eng. 2021, 226, 109344. [Google Scholar] [CrossRef]
Wettability | ||
---|---|---|
1 | completely wettable | |
wettable | ||
non-wettable |
Base Materials | Composition of Brazing Filler Metal (wt%) | Brazing Temperature (°C)/ Holding Time (min) | Strength (MPa) | References |
---|---|---|---|---|
C/C-OF Cu | Cu-28Ag-2Ti | 850/10 | 22 (Shear) | [38] |
C/C-OF Cu | Cu-2Al-3Si-2.3Ti | 1030 ± 2 | 20.2 (Tensile) | [39] |
C/C-Cu | Cu-50Pb | 1150/40 | 1.5 (Shear) | [40] |
C/C-Cu | Ti-15Cu-15Ni | 1008/10 | 24 (Shear) | [41] |
C/C-Cu | Ag-68.8Cu-4.5Ti | 910/10 | Bending: 14 (Flat), 52 (Conical interface) | [42] |
C/C-Cu | Cu-30Ti | 930 | 7 (Shear) | [43] |
C/C-Cu | Ni-33Cr-24Pd-4Si | 1210 | 6 (Shear) | [43] |
C/C-Cu | Ni-11Cr-10P | 935 | 7 (Shear) | [43] |
C/C-CuCr | AgCu-2Ti | 850/10 | 16 (Shear) | [43] |
C/C-CuW | AgCu-2Ti | 850/10 | 13 (Shear) | [43] |
C/C-CuMoCu | 68.8Ag-26.7Cu-4.5Ti | (915–920)/5 | / | [44,45] |
C/C-CuMoCu | 63Ag-34.3Cu-1Sn-1.75Ti | (821–826)/5 | / | [44] |
C/C-CuMoCu | 92.8Cu-3Si-2Al-2.25Ti | (1040–1045)/5 | / | [44] |
C/C-CuMoCu | 70Ti-15Cu-15Ni | (975–980)/5 | / | [44] |
C/C-CuMoCu | 63Ag-35.3Cu-1.75Ti | (830–835)/5 | / | [45] |
Base Materials | Composition of Brazing Filler Metal (wt%) | Brazing Temperature (°C)/Holding Time (min) | Strength (MPa) | References |
---|---|---|---|---|
C/C-TC4 | Ag-26.7Cu-4.6Ti | 910/10 | 25 (Shear) | [47,48] |
C/C-Graphite foam-Ti tube | 63Ag-32.25Cu-1.75Ti | 820/5 | 12.4 (Shear) | [49] |
C/C-TiAl | Ag-26.7Cu-4.6Ti | 900/10 | 12.9 (Shear) | [50] |
C/C-TiAl | Ti-Ni-Cu (1:1:1) | 980/10 | 18 (Shear) | [51] |
C/C-Ti | 68.8Ag-26.7Cu-4.5Ti | 910/5 | 0.24 ± 0.09 (Tensile) | [52,53] |
C/C-Ti | 92.8Cu-3Si-2Al-2.2Ti | 1040/5 | 0.27 ± 0.12 (Tensile) | [52,53] |
C/C-Ti | 70Ti15Cu15Ni | 975/5 | 0.33 ± 0.13 (Tensile) | [52,53] |
C/C-Ti | Ag-32.25Cu-1.75Ti | 830/5 | 24 (Shear) | [54] |
C/C-Ti | MBF-20 Amorphous (Ni-6.48Cr-3.13Fe-4.38Si-3.13B) | 1045/8 | / | [55] |
C/C-Ti | MBF-30 Amorphous (Ni-4.61Si-2.8B-0.02Fe) | 1080/8 | / | [55] |
Base Materials | Composition of Brazing Filler Metal (wt%) | Brazing Temperature (°C)/Holding Time (min) | Strength (MPa) | References |
---|---|---|---|---|
C/C-K24 | Ag26Cu2Ti | 880/10 | 16 (Shear) | [57] |
C/C-GH3044 | Ag-(10,20,30,40)Ti | (990~1080)/(10~90) | 45.8 (Shear) | [58] |
C/C-GH3044 | 80Ni-20Ti PTLP | 1030/30 | 9.78 (Shear) | [59] |
C/C-GH3044 | Ni71CrSi | 1080/30 | 35.08 (Shear) | [60] |
C/C-GH3044 | Ni71CrSi | 1080/30 | 54.4 (Shear) | [61] |
C/C-GH3044 | Ti/Ni/Cu/Ni (1:1:20:1) | 1030/30 | 32.09 (Shear) | [62] |
C/C-GH3128 | Ni-Si | 1160 | 12.6 (Shear) | [63] |
C/C-GH3128 | BNi-2 (Ni-7.0Cr-3.0Fe-4.5Si-3.1B) | 1170/60 | Shear: 35.4 (RT), 15.3 (800 °C), 8.6 (1000 °C) | [64] |
C/C-GH3128 | Ni-Ti | 1170 | 22.5 (Shear) | [65] |
C/C-GH99 | BNi-2 Ni-(6~8)Cr-(2.5~3.5)Fe-(4~5)Si-(2.75~3.5)B | 1170/60 | 16 (Shear) | [34] |
C/C-GH600 | BNi68CrWB | 1150~1200/10 | Shear: 49.9 (RT), 21.6 (800 °C) | [66] |
C/C-Ni-based superalloy | NiCrSiBFe Amorphous | 1170/60 | Shear: 35 (RT), 15 (800 °C), 9 (1000 °C) | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Yang, Y.; Zeng, G.; Zhou, X.; Huang, H.; Feng, S. Carbon–Carbon Composite Metallic Alloy Joints and Corresponding Nanoscale Interfaces, a Short Review: Challenges, Strategies, and Prospects. Crystals 2023, 13, 1444. https://doi.org/10.3390/cryst13101444
Wang C, Yang Y, Zeng G, Zhou X, Huang H, Feng S. Carbon–Carbon Composite Metallic Alloy Joints and Corresponding Nanoscale Interfaces, a Short Review: Challenges, Strategies, and Prospects. Crystals. 2023; 13(10):1444. https://doi.org/10.3390/cryst13101444
Chicago/Turabian StyleWang, Chenyu, Yingguo Yang, Guangli Zeng, Xingtai Zhou, Hefei Huang, and Shanglei Feng. 2023. "Carbon–Carbon Composite Metallic Alloy Joints and Corresponding Nanoscale Interfaces, a Short Review: Challenges, Strategies, and Prospects" Crystals 13, no. 10: 1444. https://doi.org/10.3390/cryst13101444
APA StyleWang, C., Yang, Y., Zeng, G., Zhou, X., Huang, H., & Feng, S. (2023). Carbon–Carbon Composite Metallic Alloy Joints and Corresponding Nanoscale Interfaces, a Short Review: Challenges, Strategies, and Prospects. Crystals, 13(10), 1444. https://doi.org/10.3390/cryst13101444