Raman Spectroscopic Study of Ruddlesden—Popper Tetragonal Sr2VO4
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruddlesden, S.N.; Popper, P. New compounds of the K2NiF4 type. Acta Cryst. 1957, 10, 538–539. [Google Scholar] [CrossRef]
- Ruddlesden, S.N.; Popper, P. The compound Sr3Ti2O7 and its structure. Acta Cryst. 1958, 11, 54–55. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Müller, K.A. Possible High Tc Superconductivity in the Ba-La-Cu-O System. Z. Phys. B Cond Mat. 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Poole, C.P., Jr.; Farach, H.A.; Creswick, R.J.; Prozorov, R. (Eds.) Superconductivity; Academic Press, Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Yatto, M.A.; Skinner, S.J. Ruddlesden-Popper phase materials for solid oxide fuel cell cathodes: A short review. Mater. Today Proc. 2022, 56, 3747–3754. [Google Scholar] [CrossRef]
- Yatto, M.A.; Seymour, I.D.; Skinner, S.J. Neutron diffraction and DFT studies of oxygen defect and transport in higher-order Ruddlesden–Popper phase materials. RSC Adv. 2023, 13, 13786–13797. [Google Scholar] [CrossRef]
- Bassat, J.-M.; Vibhu, V.; Nicollet, C.; Flura, A.; Fourcade, S.; Grenier, J.-C.; Rougier, A. Comparison of Pr-based Cathodes for IT-SOFCs in the Ruddlesden-Popper Family. ECS Trans. 2017, 78, 655–665. [Google Scholar] [CrossRef]
- Matsuno, J.; Okimoto, Y.; Kawasaki, M.; Tokura, Y. Variation of the Electronic Structure in Systematically Synthesized Sr2MO4 (M = Ti, V, Cr, Mn, and Co). Phys. Rev. Lett. 2005, 95, 176404. [Google Scholar] [CrossRef]
- Weng, H.; Kawazoe, Y.; Wan, X.; Dong, J. Electronic structure and optical properties of layered perovskite Sr2MO4 (M = Ti, V, Cr and Mn): An Ab initio study. Phys. Rev. B 2006, 74, 205112. [Google Scholar] [CrossRef]
- Nakamura, M.; Kawasaki, M.; Tokura, Y. eg-level splitting in a layered perovskite manganite as revealed by charge modulation spectroscopy. Phys. Rev. B 2012, 86, 125127. [Google Scholar] [CrossRef]
- Sakurai, H. Synthesis Conditions and Magnetic Properties of Sr2CrO4 with the K2NiF4-type structure. J. Phys. Soc. Jpn. 2014, 83, 123701. [Google Scholar] [CrossRef]
- Kim, B.J.; Ohsumi, H.; Komesu, T.; Sakai, S.; Morita, T.; Takagi, H.; Arima, T. Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4. Science 2009, 323, 1329–1332. [Google Scholar] [CrossRef]
- Haskel, D.; Fabbris, G.; Zhernonkov, M.; Kong, P.P.; Jin, C.Q.; Cao, G.; van Veenendaal, M. Pressure Tuning of the Spin-Orbit Coupled Ground State in Sr2IrO4. Phys. Rev. Lett. 2012, 109, 027204. [Google Scholar] [CrossRef]
- Matsuno, J.; Okimoto, Y.; Fang, Z.; Yu, X.Z.; Matsui, Y.; Nagaosa, N.; Kawasaki, M.; Tokura, Y. Metallic Ferromagnet with Square-Lattice CoO2 Sheets. Phys. Rev. Lett. 2004, 93, 167202. [Google Scholar] [CrossRef]
- Wang, X.L.; Sakurai, H.; Takayama-Muromachi, E. Synthesis, structures, and magnetic properties of novel Ruddlesden-Popper homologous series Srn+1ConO3n+1 (n = 1, 2, 3, 4, and ∞). J. Appl. Phys. 2005, 97, 10M519. [Google Scholar] [CrossRef]
- Zhou, H.D.; Conner, B.S.; Balicas, L.; Wiebe, C.R. Orbital-Ordering Transition in Sr2VO4. Phys. Rev. Lett. 2007, 99, 136403. [Google Scholar] [CrossRef]
- Fukuda, S.; Oka, D.; Fukumura, T. Metal-to-insulator transition in Ruddlesden-Popper-type Srn+1VnO3n+1 (n = 1, 2) epitaxial thin films as a function of strain and VO2 stacking layer number. Appl. Phys. Lett. 2020, 116, 123101. [Google Scholar] [CrossRef]
- Luke, G.M.; Fudumato, Y.; Kojima, K.M.; Larkin, M.I.; Merrin, J.; Nachumi, B.; Uemura, Y.J.; Maeno, Y.; Mao, Z.Q.; Mori, Y.; et al. Time-reversal symmetry-breaking superconductivity in Sr2RuO4. Nature 1998, 394, 558–561. [Google Scholar] [CrossRef]
- Xia, J.; Maeno, Y.; Beyersdorf, P.T.; Fejer, M.; Kapitulnik, A. High resolution polar Kerr effect measurements of Sr2RuO4: Evidence for broken time-reversal symmetry in the superconducting state. Phys. Rev. Lett. 2006, 97, 167002. [Google Scholar] [CrossRef]
- Pustogow, A.; Luo, Y.K.; Chronister, A.; Su, Y.S.; Sokolov, D.A.; Jerzembeck, F.; Mackenzie, A.P.; Hicks, C.W.; Kikugawa, N.; Raghu, S.; et al. Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature 2019, 574, 72–75. [Google Scholar] [CrossRef]
- Singh, D.J.; Papaconstantopoulos, D.A.; Krakauer, H.; Klein, B.M.; Pickett, W.E. Electronic structure of doped Sr2VO4. Phys. C 1991, 175, 329–334. [Google Scholar] [CrossRef]
- Arita, R.; Yamasaki, A.; Held, K.; Matsuno, J.; Kuroki, K. Sr2VO4 and Ba2VO4 under pressure: An orbital switch and potential d1 superconductor. Phys. Rev. B 2007, 75, 174521. [Google Scholar] [CrossRef]
- Matsuno, J.; Okimoto, Y.; Kawasaki, M.; Tokura, Y. Synthesis and electronic structure of epitaxially stabilized Sr2-xLaxVO4 (0 ≤ x ≤ 1) thin films. Appl. Phys. Lett. 2003, 82, 194–196. [Google Scholar]
- Viennois, R.; Giannini, E.; Teyssier, J.; Elia, J.; Deisenhofer, J.; van der Marel, D. Two-dimensional orbital ordering in d1 Mott insulator Sr2VO4. J. Phys. Conf. Ser. 2010, 200, 012219. [Google Scholar] [CrossRef]
- Ueno, T.; Kim, J.; Takata, M.; Katsufuji, T. Effect of offstoichiometry on the physical properties of Sr2VO4. J. Phys. Soc. Jpn. 2014, 83, 034708. [Google Scholar] [CrossRef]
- Zhou, H.D.; Jo, Y.J.; Carpino, J.F.; Munoz, G.J.; Wiebe, C.R.; Cheng, J.G.; Rivadulla, F.; Adroja, D.T. Orbital fluctuations in the S = ½ Mott insulator Sr2VO4. Phys. Rev. B 2010, 81, 212401. [Google Scholar] [CrossRef]
- Teyssier, J.; Viennois, R.; Giannini, E.; Eremina, R.M.; Günther, A.; Deisenhofer, J.; Eremin, M.V.; van der Marel, D. Optical study of the phonons and electronic excitations in tetragonal Sr2VO4. Phys. Rev. B 2011, 84, 205130. [Google Scholar] [CrossRef]
- Sakurai, H. Phase transitions of α-Sr2VO4 with K2NiF4-type Structure. Phys. Proc. 2014, 75, 829–836. [Google Scholar] [CrossRef]
- Sugiyama, J.; Nozaki, H.; Umegaki, I.; Higemoto, W.; Ansaldo, E.J.; Brewer, J.H.; Sakurai, H.; Kao, T.-H.; Yang, H.-D.; Mansson, M. Microscopic magnetic nature of K2NiF4-type 3d transition metal oxides. J. Phys. Conf. Ser. 2014, 551, 012011. [Google Scholar] [CrossRef]
- Sugiyama, J.; Nozaki, H.; Umegaki, I.; Higemoto, W.; Ansaldo, E.J.; Brewer, J.H.; Sakurai, H.; Kao, T.-H.; Yang, H.-D.; Mansson, M. Hidden magnetic order in Sr2VO4 clarified with µ+SR. Phys. Rev. B 2014, 89, 020402(R). [Google Scholar] [CrossRef]
- Karmakar, S.; Mallavi, P.S. Novel P-T Phase Diagram of the Multiorbital Mott Insulator Sr2VO4. Phys. Rev. Lett. 2015, 114, 166402. [Google Scholar] [CrossRef]
- Yamauchi, I.; Nawa, K.; Hiraishi, M.; Miyazaki, M.; Koda, A.; Kojima, K.M.; Kadono, R.; Nakao, H.; Kumai, R.; Murakami, Y.; et al. Structural anomalies and short-range magnetic correlations in the orbitally degenerate system Sr2VO4. Phys. Rev. B 2015, 92, 064408. [Google Scholar] [CrossRef]
- Teyssier, J.; Giannini, E.; Stucky, A.; Cerny, R.; Eremin, M.V.; van der Marel, D. Jahn-Teller induced nematic orbital order in tetragonal Sr2VO4. Phys. Rev. B 2016, 93, 125138. [Google Scholar] [CrossRef]
- Yamauchi, I.; Shimazu, T.; Nishio-Hamane, D.; Sakurai, H. Contrasting pressure-induced metallization process in layered perovskites, α-Sr2MO4 (M = V, Cr). Phys. Rev. Lett. 2019, 123, 156601. [Google Scholar] [CrossRef]
- Imai, Y.; Solovyev, I.; Imada, M. Electronic structure of strongly correlated systems emerging from combining path-integral renormalization group with the density-functional approach. Phys. Rev. Lett. 2005, 95, 176405. [Google Scholar] [CrossRef]
- Imai, Y.; Imada, M. Ground state properties and optical conductivity of the transition metal oxide Sr2VO4. J. Phys. Soc. Jpn. 2006, 75, 094713. [Google Scholar] [CrossRef]
- Jackeli, G.; Khaliullin, G. Magnetically hidden order of Kramers doublets in d1 systems: Sr2VO4. Phys. Rev. Lett. 2009, 103, 067205. [Google Scholar] [CrossRef]
- Eremin, M.V.; Deisenhofer, J.; Eremina, R.M.; Teyssier, J.; van der Marel, D.; Loidl, A. Alternating spin-orbital order in tetragonal Sr2VO4. Phys. Rev. B 2011, 84, 212407. [Google Scholar] [CrossRef]
- Kim, B.; Khmelevskyi, S.; Mohn, P.; Franchini, C. Competing magnetic interactions in a spin-½ square lattice: Hidden order in Sr2VO4. Phys. Rev. B 2017, 96, 180405. [Google Scholar] [CrossRef]
- Mohapatra, S.; Kumar Singh, D.; Ray, R.; Gosh, S.; Singh, A. Spin-orbit coupling, orbitally entangled antiferromagnetic order, and collective spin-orbital excitations in Sr2VO4. J. Phys. Condens. Matter 2023, 35, 045801. [Google Scholar] [CrossRef]
- Suzuki, N.; Noritake, T.; Hioki, T. Structural analysis and physical properties of Sr2-xLaxVO4-δ. J. Alloys Compds. 2014, 612, 114–119. [Google Scholar] [CrossRef]
- Dun, Z.L.; Garlea, V.O.; Yu, C.; Ren, Y.; Choi, E.S.; Zhang, H.M.; Dong, S.; Zhou, H.D. LaSrVO4: A candidate for the spin-orbital liquid state. Phys. Rev. B 2014, 89, 235131. [Google Scholar] [CrossRef]
- Bang, J.; Matsuishi, S.; Hiraka, H.; Fujisaki, F.; Otomo, T.; Maki, S.; Yamaura, J.-I.; Kumai, R.; Murakami, Y.; Hosono, H. Hydrogen ordering and new polymorph of layered perovskite oxyhydride: Sr2VO4-xHx. J. Am. Chem. Soc. 2014, 136, 7221–7224. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.; Matsuishi, S.; Maki, S.; Yamaura, J.-I.; Hiraishi, M.; Takeshita, S.; Yamauchi, I.; Kojima, K.M.; Hosono, H. Low dimensionalization of magnetic ordering in Sr2VO4 by hydride ion substitution. Phys. Rev. B 2015, 92, 064414. [Google Scholar] [CrossRef]
- Kong, X.; Yu, Y.; Zhang, C.; Gao, T. Structural, lattice dynamics and thermodynamic properties of Sr2VO4 from first principles. J. Alloys Compds. 2017, 699, 98–105. [Google Scholar] [CrossRef]
- Viennois, R.; Hermet, P.; Machon, D.; Koza, M.M.; Bourgogne, D.; Fraisse, B.; Petrovic, A.P.; Maurin, D. Stability and lattice dynamics of Ruddlesden-Popper tetragonal Sr2TiO4. J. Phys. Chem. C 2020, 124, 27882–27893. [Google Scholar] [CrossRef]
- Angel, R.J.; Bujak, M.; Zhao, J.; Gatta, G.D.; Jacobsen, S.D. Effective hydrostatic limits of pressure media or high-pressure crystallographic studies. J. Appl. Cryst. 2006, 40, 26–32. [Google Scholar] [CrossRef]
- Shen, G.; Wang, Y.; Dewaele, A.; Wu, C.; Fratanduono, D.E.; Eggert, J.; IPPS Task Group. Toward an international practical pressure scale: A proposal for an IPPS ruby gauge (IPPS-Ruby2020). High Pressure Res. 2020, 40, 299–314. [Google Scholar] [CrossRef]
- Fennie, C.J.; Rabe, K.M. Structural and dielectric properties of Sr2TiO4 from first principles. Phys. Rev. B 2003, 68, 184111. [Google Scholar] [CrossRef]
- Saini, N.; Jindal, R.; Tripathi, A. A normal coordinate analysis of Sr2BO4 crystals (B = Ti, V, and Mn). Mater. Today Proc. 2022, 50, 243–247. [Google Scholar] [CrossRef]
- Lucazeau, G. Effect of pressure and temperature on Raman spectra of solids: Anharmonicity. J. Raman Spectrosc. 2003, 34, 478–496. [Google Scholar] [CrossRef]
- Liarokiapis, E.; Anastassakis, E.; Kourouklis, G.A. Raman study of the phonon anharmonicity in LaF3. Phys. Rev. B 1985, 32, 8346–8355. [Google Scholar] [CrossRef] [PubMed]
- Venkastewaran, U.; Strössner, K.; Syassen, K.; Burns, G.; Shafer, M.W. Pressure dependence of the Raman modes in Sr2TiO4. Solid State Commun. 1987, 64, 1273–1277. [Google Scholar] [CrossRef]
- Vinet, P.; Rose, J.H.; Ferrante, J.; Smith, J.R. Universal features of the equation of states of solids. J. Phys. Condens. Matter 1989, 1, 1941–1963. [Google Scholar] [CrossRef]
- Gonzalez-Plata, J.; Alvaro, M.; Nestola, F.; Angel, R. EoSFit7-GUI: A new graphical user interface for equation of state calculations, analyses and teaching. J. Appl. Cryst. 2016, 49, 1377–1382. [Google Scholar] [CrossRef]
- Barron, T.H.K.; Collins, J.G.; White, G.K. Thermal expansion of solids at low temperatures. Adv. Phys. 1980, 29, 609–730. [Google Scholar] [CrossRef]
- Viennois, R.; Petrovic, A.; Teyssier, J.; Deisenhofer, J.; Giannini, E. Unpublished work. 2023. [Google Scholar]
- Balkanski, M.; Wallis, R.F.; Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 1983, 28, 1928–1934. [Google Scholar] [CrossRef]
- Skinner, S.J. Characterisation of La2NiO4+δ using in-situ high temperature neutron powder diffraction. Solid State Sci. 2003, 5, 419–426. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viennois, R.; Bourgogne, D.; Haines, J. Raman Spectroscopic Study of Ruddlesden—Popper Tetragonal Sr2VO4. Crystals 2023, 13, 1541. https://doi.org/10.3390/cryst13111541
Viennois R, Bourgogne D, Haines J. Raman Spectroscopic Study of Ruddlesden—Popper Tetragonal Sr2VO4. Crystals. 2023; 13(11):1541. https://doi.org/10.3390/cryst13111541
Chicago/Turabian StyleViennois, Romain, David Bourgogne, and Julien Haines. 2023. "Raman Spectroscopic Study of Ruddlesden—Popper Tetragonal Sr2VO4" Crystals 13, no. 11: 1541. https://doi.org/10.3390/cryst13111541
APA StyleViennois, R., Bourgogne, D., & Haines, J. (2023). Raman Spectroscopic Study of Ruddlesden—Popper Tetragonal Sr2VO4. Crystals, 13(11), 1541. https://doi.org/10.3390/cryst13111541