Study on the Effect of Monoacrylic Monomers on the Polymer Network Morphology and Electro-Optical Performance of Reverse-Mode Polymer Stabilized Liquid Crystal Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Study of PSLC Films Containing Monoacrylic Monomers with Different End Groups
3.2. The Study of Cyano PSLC Films
3.3. The Study of Carboxyl PSLC Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066. [Google Scholar] [CrossRef]
- Zhang, P.; Tong, X.; Gao, Y. A Sensing and Stretchable Polymer-Dispersed Liquid Crystal Device Based on Spiderweb-Inspired Silver Nanowires-Micromesh Transparent Electrode. Adv. Funct. Mater. 2023, 33, 2303270. [Google Scholar]
- Dierking, I. Polymer network—Stabilized liquid crystals. Adv. Mater. 2000, 12, 167–181. [Google Scholar] [CrossRef]
- Li, H.; Xu, J.; Ren, Y.; Han, R.; Song, H.; Huang, R.; Wang, X.; Zhang, L.; Cao, H.; Zou, C.; et al. Preparation of Highly Durable Reverse-Mode Polymer-Stabilized Liquid Crystal Films with Polymer Walls. ACS Appl. Mater. Interfaces 2022, 15, 2228–2236. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.-M.; Liang, X.; Zhang, C.-H.; Chen, M.; Shen, C.; Zhang, L.-Y.; Yuan, X.; He, B.-F.; Yang, H. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals. ACS Appl. Mater. Interfaces 2017, 9, 2942–2947. [Google Scholar] [PubMed]
- Zhang, T.; Kashima, M.; Zhang, M.; Liu, F.; Song, P.; Zhao, X.; Zhang, C.; Cao, H.; Yang, H. Effects of the functionality of epoxy monomer on the electro-optical properties of thermally-cured polymer dispersed liquid crystal films. RSC Adv. 2012, 2, 2144–2148. [Google Scholar] [CrossRef]
- Meng, Q.; Cao, H.; Kashima, M.; Liu, H.; Yang, H. Effects of the structures of epoxy monomers on the electro-optical properties of heat-cured polymer-dispersed liquid crystal films. Liq. Cryst. 2010, 37, 189–193. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, D.; Cao, H.; Song, P.; Yang, C.; Yang, H.; Hu, G.-H. Preparation and electro-optical properties of polymer dispersed liquid crystal films with relatively low liquid crystal content. Polym. Adv. Technol. 2013, 24, 453–459. [Google Scholar]
- Yu, M.; Xu, J.; Luo, L. Role of Hydroxy Group in the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals. Crystals 2023, 13, 843. [Google Scholar]
- Jamil, M.; Ahmad, F.; Rhee, J.T.; Jeon, Y.J. Nanoparticle-doped polymer-dispersed liquid crystal display. Curr. Sci. 2011, 101, 1544–1552. [Google Scholar]
- Kizhakidathazhath, R.; Nishikawa, H.; Okumura, Y. High-performance polymer dispersed liquid crystal enabled by uniquely designed acrylate monomer. Polymers 2020, 12, 1625. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A. Investigation of vacuum-integrated switchable polymer dispersed liquid crystal glazing for smart window application for less energy-hungry building. Energy 2023, 265, 126396. [Google Scholar]
- Bobnar, M.; Derets, N.; Umerova, S. Polymer-dispersed liquid crystal elastomers as moldable shape-programmable material. Nat. Commun. 2023, 14, 764. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa, A.; Sharma, S.C. Effects of gold nanoparticles on electro-optical properties of a polymer-dispersed liquid crystal. Appl. Phys. Lett. 2010, 97, 081114. [Google Scholar]
- Shivaraja, S.J.; Gupta, R.K.; Manjuladevi, V. Faster switching polymer dispersed liquid crystal devices incorporated with functionalized SWCNTs. J. Mol. Liq. 2022, 354, 118905. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, J.; Liu, Y.; Zhu, Q. Investigation of dielectric properties in polymer dispersed liquid crystal films doped with CuO nanorods. J. Mol. Liq. 2019, 295, 111667. [Google Scholar] [CrossRef]
- He, Z.; Yin, K.; Hsiang, E.; Wu, S. Volumetric light-shaping polymer-dispersed liquid crystal films for mini-LED backlights. Liq. Cryst. 2020, 47, 1458–1463. [Google Scholar] [CrossRef]
- Li, X.; Guo, Y.; Huai, H.; Yang, Y.; Sun, Y.; Zhang, C.; Sun, Y. The effect of monomer and chiral dopant content on reverse-mode polymer stabilized cholesteric liquid crystal display. J. Mol. Liq. 2020, 309, 113112. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Yang, W.; Jiang, X.; Jiang, X.; de Haan, L.T.; Yuan, D.; Zhao, W.; Zheng, N.; Jin, M.; et al. Stable and scalable smart window based on polymer stabilized liquid crystals. J. Appl. Polym. Sci. 2020, 137, 48917. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Wang, K.; Huai, H.; Ma, H.; Sun, Y. Effect of the introduction of mono-functional monomer on the electro-optic properties of reverse-mode polymer stabilised cholesteric liquid crystal. Liq. Cryst. 2021, 48, 1162–1174. [Google Scholar]
- Chen, Y.X.; Hsu, J.S. Ultra-low switching reverse mode liquid crystal gels. Opt. Express 2020, 28, 26783–26791. [Google Scholar] [CrossRef]
- Meng, C.; Tseng, M.C.; Tang, S.T.; Zhao, C.X.; Yeung, S.Y.; Kwok, H.S. Normally transparent smart window with haze enhancement via inhomogeneous alignment surface. Liq. Cryst. 2019, 46, 484–491. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Zhou, P.; Chen, Q.; Su, Y. Reverse-mode PSLC multi-plane optical see-through display for AR applications. Opt. Express 2018, 26, 3394–3403. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, H.; Yamamoto, H.; Sato, H.; Kawakita, M.; Takizawa, K.; Fujikake, H. Formation of polymer-wall-stabilized bend-mode liquid crystal cells. J. Photopolym. Sci. Technol. 2003, 16, 181–186. [Google Scholar] [CrossRef]
- Gheorghiu, N.; West, J.L.; Glushchenko, A.V.; Mitrokhin, M. Patterned field induced polymer walls for smectic A bistable flexible displays. Appl. Phys. Lett. 2006, 88, 263511. [Google Scholar] [CrossRef]
- Yu, H.H.; Hwang, S.J.; Chen, R.L.; Yang, C.Y. Study of the purifying affects of thermal annealing for polymer-wall liquid crystal cells. Liq. Cryst. 2008, 35, 1339–1343. [Google Scholar] [CrossRef]
- Song, D.H.; Lee, S.R.; Yoon, T.; Kim, J.C. Multi-dimensional liquid crystal alignment effect of polymer wall on vertically aligned liquid crystal cell. Jpn. J. Appl. Phys. 2010, 49, 11702. [Google Scholar] [CrossRef]
- Lee, Y.; Jang, S.; Jung, J.; Kim, H.-R.; Jin, M.Y.; Choi, Y.; Kim, J.-H. Mechanical stability of pixel-isolated liquid crystal mode for flexible display application. Mol. Cryst. Liq. Cryst. 2006, 458, 81–87. [Google Scholar] [CrossRef]
- Zheng, W.; Lee, M.C. Attainment of planarly aligned liquid crystal using vertical alignment polymer walls. Mol. Cryst. Liq. Cryst. 2012, 553, 28–35. [Google Scholar] [CrossRef]
- Liang, X.; Guo, S.; Chen, M. A temperature and electric field-responsive flexible smart film with full broadband optical modulation. Mater. Horiz. 2017, 4, 878–884. [Google Scholar] [CrossRef]
- Guo, S.; Liang, X.; Zhang, H. An electrically light-transmittance-controllable film with a low-driving voltage from a coexistent system of polymer-dispersed and polymer-stabilised cholesteric liquid crystals. Liq. Cryst. 2018, 45, 1854–1860. [Google Scholar] [CrossRef]
- Liang, X.; Guo, C.; Chen, M. A roll-to-roll process for multi-responsive soft-matter composite films containing CsxWO3 nanorods for energy-efficient smart window applications. Nanoscale Horiz. 2017, 2, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Chen, M.; Guo, S. Programmable electro-optical performances in a dual-frequency liquid crystals/polymer composite system. Polymer 2018, 149, 164–168. [Google Scholar] [CrossRef]
- Zhou, Y.; You, Y.; Liao, X.; Liu, W.; Zhou, L.; Zhang, B.; Zhao, W.; Hu, X.; Zhang, L.; Yang, H.; et al. Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices. Macromol. Chem. Phys. 2020, 221, 2000185. [Google Scholar] [CrossRef]
Sample | Composition | Weight Ratio (wt%) |
---|---|---|
Different monoacrylate functional groups S1 S2 S3 S4 | ||
C6M/IR 651/GXV-7822-180 | 7.5/0.1/92.4 | |
C6M/OMe/IR 651/GXV-7822-180 | 4.5/3.0/0.1/92.4 | |
C6M/COOH/IR 651/GXV-7822-180 C6M/CN/IR 651/GXV-7822-180 | 4.5/3.0/0.1/92.4 4.5/3.0/0.1/92.4 | |
Cyano PSLC films A2-1 B2-1 C2-1 D2-1 E2-1 F2-1 | ||
C6M/CN/IR 651/GXV-7822-180 C6M/CN/IR 651/GXV-7822-180 C6M/CN/IR 651/GXV-7822-180 C6M/CN/IR 651/GXV-7822-180 C6M/CN/IR 651/GXV-7822-180 C6M/CN/IR 651/GXV-7822-180 | 7.5/0/0.1/92.4 6.0/1.5/0.1/92.4 4.5/3.0/0.1/92.4 3.0/4.5/0.1/92.4 1.5/6.0/0.1/92.4 0.0/7.5/0.1/92.4 | |
Carboxyl PSLC films A2-2 B2-2 C2-2 D2-2 E2-2 F2-2 | ||
C6M/C6A/IR 651/GXV-7822-180 | 7.5/0/0.1/92.4 | |
C6M/C6A/IR 651/GXV-7822-180 C6M/C6A/IR 651/GXV-7822-180 | 6.0/1.5/0.1/92.4 4.5/3.0/0.1/92.4 | |
C6M/C6A/IR 651/GXV-7822-180 C6M/C6A/IR 651/GXV-7822-180 C6M/C6A/IR 651/GXV-7822-180 | 3.0/4.5/0.1/92.4 1.5/6.0/0.1/92.4 0.0/7.5/0.1/92.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Wu, Y.; Song, Z.; Shi, Y.; Xiong, G.; Yu, M.; Gao, Y.; Wang, Q.; Zou, C.; Xiao, J. Study on the Effect of Monoacrylic Monomers on the Polymer Network Morphology and Electro-Optical Performance of Reverse-Mode Polymer Stabilized Liquid Crystal Devices. Crystals 2023, 13, 1616. https://doi.org/10.3390/cryst13121616
Ma C, Wu Y, Song Z, Shi Y, Xiong G, Yu M, Gao Y, Wang Q, Zou C, Xiao J. Study on the Effect of Monoacrylic Monomers on the Polymer Network Morphology and Electro-Optical Performance of Reverse-Mode Polymer Stabilized Liquid Crystal Devices. Crystals. 2023; 13(12):1616. https://doi.org/10.3390/cryst13121616
Chicago/Turabian StyleMa, Cong, Yishuo Wu, Zhexu Song, Yingjie Shi, Guirong Xiong, Meina Yu, Yanzi Gao, Qian Wang, Cheng Zou, and Jiumei Xiao. 2023. "Study on the Effect of Monoacrylic Monomers on the Polymer Network Morphology and Electro-Optical Performance of Reverse-Mode Polymer Stabilized Liquid Crystal Devices" Crystals 13, no. 12: 1616. https://doi.org/10.3390/cryst13121616
APA StyleMa, C., Wu, Y., Song, Z., Shi, Y., Xiong, G., Yu, M., Gao, Y., Wang, Q., Zou, C., & Xiao, J. (2023). Study on the Effect of Monoacrylic Monomers on the Polymer Network Morphology and Electro-Optical Performance of Reverse-Mode Polymer Stabilized Liquid Crystal Devices. Crystals, 13(12), 1616. https://doi.org/10.3390/cryst13121616