Repair of Fused Silica Damage Using Selective Femtosecond Laser-Induced Etching
(This article belongs to the Section Inorganic Crystalline Materials)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Samples
2.2. Principle
2.3. Methods
3. Results and Discussion
3.1. The Femtosecond Laser Modification Repair of Damage Point
3.2. Femtosecond Laser Parameters
3.3. Scanning Speed in Modification
3.4. Etching Solution
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, C.; Zhang, L.; Jiang, X.; Jia, B.; Liao, W.; Dai, R.; Chen, J.; Yuan, X. Influence of pulse length on heat affected zones of evaporatively-mitigated damages of fused silica optics by CO2 laser. Opt. Lasers Eng. 2019, 125, 105857. [Google Scholar] [CrossRef]
- Li, Z.; Kong, X.; Zhang, J.; Shao, L.; Zhang, D.; Liu, J.; Wang, X.; Zhu, W.; Qiu, C. Cryptography Metasurface for One-Time-Pad Encryption and Massive Data Storage. Laser Photon-Rev. 2022, 16, 2200113. [Google Scholar] [CrossRef]
- Nasiri, S.; Khosravani, M.R. Applications of data-driven approaches in prediction of fatigue and fracture. Mater. Today Commun. 2022, 33, 104437. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Lu, S.; Jiang, X.; Ma, C.; Lin, L.; Wang, X. Fatigue damage monitoring of repaired composite wind turbine blades using high-stability bucky paper sensors. Compos. Sci. Technol. 2022, 227, 109592. [Google Scholar] [CrossRef]
- Doualle, T.; Gallais, L.; Monneret, S.; Bouillet, S.; Bourgeade, A.; Ameil, C.; Lamaignère, L.; Cormont, P. CO2 laser microprocessing for laser damage growth mitigation of fused silica optics. Opt. Eng. 2016, 56, 011022. [Google Scholar] [CrossRef]
- Bass, I.L.; Guss, G.M.; Nostrand, M.J.; Wegner, P.J. An improved method of mitigating laser-induced surface damage growth in fused silica using a rastered pulsed CO2 laser. In Laser-Induced Damage in Optical Materials; SPIE Laser Damage: Boulder, CO, USA, 2010; Volume 784, pp. 522–533. [Google Scholar]
- Zhang, C.-C.; Zhang, L.-J.; Liao, W.; Yan, Z.-H.; Chen, J.; Jiang, Y.-L.; Wang, H.-J.; Luan, X.-Y.; Ye, Y.-Y.; Zheng, W.-G.; et al. ATR-FTIR spectroscopic studies on density changes of fused silica induced by localized CO 2 laser treatment. Chin. Phys. B 2015, 24, 024220. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, Z.; Wang, C.; Zhao, L.; Chen, M.; Wang, J.; Li, Y.; Xu, Q.; Liu, Z.; Xu, H. Effect of scratches on the damage characteristics of fused silica optics under extremely-high impact load. Int. J. Mech. Sci. 2022, 219, 107099. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, Y.; Wei, H.; Fan, W.; Li, X. Research on damage repair of dielectric film based on femtosecond laser micromachining. Acta Phys. Sin. 2015, 64, 0154207. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, Y.; Chen, S.; Hu, G.; Liu, W.; Chen, W.; Li, D.; Shao, J. Femtosecond laser repair technology for ultraviolet damage points on fused silica surface. Chin. Laser 2013, 40, 0403001. [Google Scholar] [CrossRef]
- Juodkazis, S.; Nishimura, K.; Misawa, H.; Ebisui, T.; Waki, R.; Matsuo, S.; Okada, T. Control over the Crystalline State of Sapphire. Adv. Mater. 2006, 18, 1361–1364. [Google Scholar] [CrossRef]
- Gottmann, J.; Hermans, M.; Ortmann, J. Microcutting and hollow 3D microstructures in glasses by in-volume selective laser-induced etching (ISLE). J. Laser Micro Nanoeng. 2013, 8, 15. [Google Scholar] [CrossRef]
- Rennpferdt, L.; Bohne, S.; Trieu, H.K. Advances in manufacturing spinal cord implant using 3D selective laser induced etching of fused silica. Trans. Addit. Manuf. Meets Med. 2021, 3, 574. [Google Scholar]
- Wang, W.; Li, Z.; Yao, P.; Li, J.; Chen, F.; Liu, Y. Sink-in/pile-up formation and crack nucleation mechanisms of high purity fused silica and soda-lime silica glass during nanoindentation experiments. Ceram. Int. 2020, 46, 24698–24709. [Google Scholar] [CrossRef]
- Chen, J.; Lu, X.; Wen, Q.; Jiang, F.; Lu, J.; Lei, D.; Pan, Y. Review on laser-induced etching processing technology for transparent hard and brittle materials. Int. J. Adv. Manuf. Technol. 2021, 117, 2545–2564. [Google Scholar] [CrossRef]
- Matsuo, S.; Shichijo, Y.; Tomita, T.; Hashimoto, S. Laser fabrication of ship-in-a-bottle microstructures in sapphire. JLMN 2007, 2, 114–116. [Google Scholar] [CrossRef]
- Huang, J.; Fu, X.; Liu, G.; Xu, S.; Li, X.; Zhang, C.; Jiang, L. Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing. Nano Energy 2019, 62, 638–644. [Google Scholar] [CrossRef]
- Ali, M.; Wagner, T.; Shakoor, M.; Molian, P.A. Review of laser nanomachining. J. Laser Appl. 2008, 20, 169–184. [Google Scholar] [CrossRef]
- Wolfe, J.E.; Qiu, S.R.; Stolz, C.J. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining. Appl. Opt. 2011, 50, C457–C462. [Google Scholar] [CrossRef]
- Liao, K.; Wang, W.; Mei, X.; Liu, B. Research on femtosecond laser single-shot high-quality direct cutting of thin quartz glass based on filament effect (invited). Acta Photonica Sin. 2021, 50, 3. [Google Scholar]
- Zha, H.; Yao, Y.; Wang, M.; Chen, N.-K.; Zhang, L.; Bai, C.; Liu, T.; Ren, Y.; Jia, Y. Bending 90° Waveguides in Nd:YAG Crystal Fabricated by a Combination of Femtosecond Laser Inscription and Precise Diamond Blade Dicing. Crystals 2023, 13, 188. [Google Scholar] [CrossRef]
- Gamaly, E.G.; Rode, A.; Luther-Davies, B.; Tikhonchuk, V.T. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 2002, 9, 949–957. [Google Scholar] [CrossRef]
- Jeschke, H.O.; Garcia, M.E.; Bennemann, K.H. Theory for the Ultrafast Ablation of Graphite Films. Phys. Rev. Lett. 2001, 87, 015003. [Google Scholar] [CrossRef] [Green Version]
- Lenzner, M.; Krüger, J.; Sartania, S.; Cheng, Z.; Spielmann, C.; Mourou, G.; Kautek, W.; Krausz, F. Femtosecond Optical Breakdown in Dielectrics. Phys. Rev. Lett. 1998, 80, 4076–4079. [Google Scholar] [CrossRef]
- Du, D.; Liu, X.; Korn, G.; Squier, J.; Mourou, G. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 1994, 64, 3071–3073. [Google Scholar] [CrossRef]
- Matsuo, S.; Sumi, H.; Kiyama, S.; Tomita, T.; Hashimoto, S. Femtosecond laser-assisted etching of Pyrex glass with aqueous solution of KOH. Appl. Surf. Sci. 2009, 255, 9758–9760. [Google Scholar] [CrossRef]
- Gorelik, T.; Will, M.; Nolte, S.; Tuennermann, A.; Glatzel, U. Transmission electron microscopy studies of femtosecond laser induced modifications in quartz. Appl. Phys. A 2003, 76, 309–311. [Google Scholar] [CrossRef]
- Nakashima, S.; Sugioka, K.; Midorikawa, K. Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond-laser ablation. Appl. Surf. Sci. 2009, 255, 9770–9774. [Google Scholar] [CrossRef]
- Wortmann, D.; Gottmann, J.; Brandt, N.; Horn-Solle, H. Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching. Opt. Express 2008, 16, 1517–1522. [Google Scholar] [CrossRef]
- Kiyama, S.; Matsuo, S.; Hashimoto, S.; Morihira, Y. Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates. J. Phys. Chem. C 2009, 113, 11560–11566. [Google Scholar] [CrossRef]
- Sinha, A.; Gupta, M.C. Microscale patterning of semiconductor c-Si by selective laser-heating induced KOH etching. Semicond. Sci. Technol. 2021, 36, 085002. [Google Scholar] [CrossRef]
Density (g/cm−3) | Knoop Hardness (kg/mm2) | Young’s Modulus (GPa) | Shear Modulus (Gpa) | Bulk Modulus (Gpa) |
---|---|---|---|---|
2.2 | 522.0 | 72.7 | 31.4 | 35.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; Chen, J.; Jiang, X.; Zhang, C.; Zhang, L.; Wang, J.; Luan, X.; Wang, H.; Wu, Q.; Liao, W. Repair of Fused Silica Damage Using Selective Femtosecond Laser-Induced Etching. Crystals 2023, 13, 309. https://doi.org/10.3390/cryst13020309
Fang Z, Chen J, Jiang X, Zhang C, Zhang L, Wang J, Luan X, Wang H, Wu Q, Liao W. Repair of Fused Silica Damage Using Selective Femtosecond Laser-Induced Etching. Crystals. 2023; 13(2):309. https://doi.org/10.3390/cryst13020309
Chicago/Turabian StyleFang, Zhenhua, Jing Chen, Xiaolong Jiang, Chuanchao Zhang, Lijuan Zhang, Jingxuan Wang, Xiaoyu Luan, Haijun Wang, Qiankun Wu, and Wei Liao. 2023. "Repair of Fused Silica Damage Using Selective Femtosecond Laser-Induced Etching" Crystals 13, no. 2: 309. https://doi.org/10.3390/cryst13020309
APA StyleFang, Z., Chen, J., Jiang, X., Zhang, C., Zhang, L., Wang, J., Luan, X., Wang, H., Wu, Q., & Liao, W. (2023). Repair of Fused Silica Damage Using Selective Femtosecond Laser-Induced Etching. Crystals, 13(2), 309. https://doi.org/10.3390/cryst13020309