High Temperature Deformation Behavior of Near-β Titanium Alloy Ti-3Al-6Cr-5V-5Mo at α + β and β Phase Fields
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Flow Stress
3.2. Constitutive Model for High-Temperature Deformation
3.2.1. Constitutive Relations
3.2.2. Verification of Constitutive Equations
3.3. Processing Map
3.4. Microstructural Verification of TMP Region
4. Conclusions
- (1)
- The constitutive models for the high-temperature deformation that occurred at the dual-phase field and single-phase field of the Ti-3Al-6Cr-5V-5Mo alloy are established, respectively.
- (2)
- For the constitutive models established for the α + β phase field and β phase field, the correlated coefficients between actual stress and predicted stress are 0.986 and 0.983, and the mean relative errors of prediction are 2.7% and 4.1%, respectively. The accuracy of the model is slightly higher than some Arrhenius’s constitutive equations for other titanium alloys. The constitutive equation has good prediction accuracy for the flow stress of Ti-3Al-6Cr-5V-5Mo alloy at both dual-phase and single-phase fields.
- (3)
- An instability region at the range of temperature from 700 °C to 780 °C and the range of strain rates from 0.08 s−1 to 10 s−1 should be averted during thermomechanical processing. It is suggested that the alloy should be processed at a range of temperature from 790 °C to 800 °C and a range of strain rate from 0.001 s−1 to 0.007 s−1.
- (4)
- When the strain rate is 0.001 s−1, the number of DRX grains increases with the increase of temperature during deformation occurring at α + β phase field. The most homogeneous grains with the minimum average grain size of 17 μm and maximum amount of DRX were obtained during deformation, which occurred at 790 °C/0.001 s−1. It is consistent with the power-dissipation-coefficient region predicted by the processing map.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Hao, M.; Li, D.; Li, P.; Liang, Q.; Wang, D.; Zheng, Y.; Sun, Q.; Wang, Y. Enhanced mechanical properties of Ti-5Al-5Mo-5V-3Cr-1Zr by bimodal lamellar precipitate microstructures via two-step aging. Mater. Sci. Eng. A 2021, 829, 142117. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Zhou, G.; Zhang, S.; Chen, L. Dependence of strength and ductility on secondary α phase in a novel metastable-β titanium alloy. J. Mater. Res. Technol. 2022, 18, 5257–5266. [Google Scholar] [CrossRef]
- Sadeghpour, S.; Abbasi, S.; Morakabati, M.; Kisko, A.; Karjalainen, L.; Porter, D. A new multi-element beta titanium alloy with a high yield strength exhibiting transformation and twinning induced plasticity effects. Scr. Mater. 2018, 145, 104–108. [Google Scholar] [CrossRef]
- Zhang, S.H.; Deng, L.; Che, L.Z. An integrated model of rolling force for extra-thick plate by combining theoretical model and neural network model. J. Manuf. Process. 2022, 75, 100–109. [Google Scholar] [CrossRef]
- Damodaran, D.; Shivpuri, R. Prediction and control of part distortion during the hot extrusion of titanium alloys. J. Mater. Process. Technol. 2004, 150, 70–75. [Google Scholar] [CrossRef]
- Cai, J.; Guo, M.; Peng, P.; Han, P.; Yang, X.; Ding, B.; Qiao, K.; Wang, K.; Wang, W. Research on Hot Deformation Behavior of As-Forged TC17 Titanium Alloy. J. Mater. Eng. Perform. 2021, 30, 7259–7274. [Google Scholar] [CrossRef]
- Meng, L.; Kitashima, T.; Tsuchiyama, T.; Watanabe, M. Effect of α precipitation on β texture evolution during β-processed forging in a near-β titanium alloy. Mater. Sci. Eng. A 2019, 771, 138640. [Google Scholar] [CrossRef]
- Luo, S.; Yao, J.; Zou, G.; Li, J.; Jiang, J.; Yu, F. Influence of forging velocity on temperature and phase transformation characteristics of forged Ti-6Al-4V aeroengine drum. Int. J. Adv. Manuf. Technol. 2020, 110, 3101–3111. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Q.; Tan, Y.; Ma, M.; Xiang, S.; Zhao, F. Simulation and Experimental Study of Dynamical Recrystallization Kinetics of TB8 Titanium Alloys. Materials 2020, 13, 4429. [Google Scholar] [CrossRef]
- Li, C.; Huang, C.; Ding, Z.; Zhou, X. Research on High-Temperature Compressive Properties of Ti–10V–1Fe–3Al Alloy. Metals 2022, 12, 526. [Google Scholar] [CrossRef]
- Park, C.W.; Choi, M.S.; Lee, H.; Yoon, J.; Javadinejad, H.R.; Kim, J.H. High-temperature deformation behavior and microstructural evolution of as-cast and hot rolled β21S alloy during hot deformation. J. Mater. Res. Technol. 2020, 9, 13555–13569. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Xue, J.; Liu, S.; Deng, Q.; Li, F.; Ding, J.; Wang, H.; Chang, H. Hot deformation characteristics and mechanism understanding of Ti–6Al–2Sn–4Zr–6Mo titanium alloy. J. Mater. Res. Technol. 2022, 20, 2591–2610. [Google Scholar] [CrossRef]
- Chen, H.; Qin, H.; Qin, F.; Li, B.; Yu, Y.; Li, C. Hot Deformation Behavior and Microstructure Evolution of Ti–6Cr–5Mo–5V–4Al–1Nb Alloy. Crystals 2023, 13, 182. [Google Scholar] [CrossRef]
- Guo, H.; Du, Z.; Wang, X.; Cheng, J.; Liu, F.; Cui, X.; Liu, H. Flowing and dynamic recrystallization behavior of new biomedical metastable β titanium alloy. Mater. Res. Express 2019, 6, 0865d2. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, D.; Zhou, Y.; Sha, A.; Cheng, H.; Yan, Y. A Constitutive Relation Based on the Johnson–Cook Model for Ti-22Al-23Nb-2(Mo, Zr) Alloy at Elevated Temperature. Crystals 2021, 11, 754. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, F.; Torrens, R.; Bolzoni, L. Comparison of hot deformation behaviour and microstructural evolution for Ti-5Al-5V-5Mo-3Cr alloys prepared by powder metallurgy and ingot metallurgy approaches. Mater. Des. 2019, 169, 107682. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Maier, H.J.; Niendorf, T.; Yapici, G.G. Elevated Temperature Mechanical Characteristics and Fracture Behavior of a Novel Beta Titanium Alloy. Crystals 2023, 13, 269. [Google Scholar] [CrossRef]
- Fu, M.; Pan, S.; Liu, H.; Chen, Y. Initial Microstructure Effects on Hot Tensile Deformation and Fracture Mechanisms of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy Using In Situ Observation. Crystals 2022, 12, 934. [Google Scholar] [CrossRef]
- Santosh, S.; Sampath, V.; Mouliswar, R. Hot deformation characteristics of NiTiV shape memory alloy and modeling using constitutive equations and artificial neural networks. J. Alloy. Compd. 2022, 901, 163451. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, M.; Tan, Y.; Xiang, S.; Zhao, F.; Liang, Y. Initial β Grain Size Effect on High-Temperature Flow Behavior of Tb8 Titanium Alloys in Single β Phase Field. Metals 2019, 9, 891. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Zhu, W.; Chen, L.; Sun, Q.; Xiao, L.; Sun, J. Deformation behaviour and microstructural evolution during the hot compression of Ti-5Al4Zr8Mo7V alloy. Mater. Today Commun. 2019, 23, 100873. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Lu, S.; Li, X.; OuYang, D.; Qiu, Q. Softening mechanism and process parameters optimization of Ti-4.2Al-0.005B titanium alloy during hot deformation. J. Mater. Res. Technol. 2022, 17, 1842–1851. [Google Scholar] [CrossRef]
- Han, L.; Zhang, H.; Cheng, J.; Zhou, G.; Wang, C.; Chen, L. Thermal Deformation Behavior of Ti-6Mo-5V-3Al-2Fe Alloy. Crystals 2021, 11, 1245. [Google Scholar] [CrossRef]
- Pang, X.; Xiong, Z.; Liu, S.; Sun, J.; Misra, R.; Kokawa, H.; Li, Z. Grain refinement effect of ZrB2 in laser additive manufactured metastable β-titanium alloy with enhanced mechanical properties. Mater. Sci. Eng. A 2022, 857, 144104. [Google Scholar] [CrossRef]
- Gu, B.; Chekhonin, P.; Xin, S.; Liu, G.; Ma, C.; Zhou, L.; Skrotzki, W. Effect of temperature and strain rate on the deformation behavior of Ti5321 during hot-compression. J. Alloy. Compd. 2021, 876, 159938. [Google Scholar] [CrossRef]
- Liu, S.F.; Li, M.Q.; Luo, J.; Yang, Z. Deformation behavior in the isothermal compression of Ti-5Al-5Mo-5V-1Cr-1Fe alloy. Mater. Sci. Eng. A 2014, 589, 15–22. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Ma, X. High temperature deformation and dynamic recrystallization behavior of AlCrCuFeNi high entropy alloy. Mater. Sci. Eng. A 2020, 778, 139077. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, W.; Zhen, L.; Yang, L.; Zhang, X. Flow behavior and microstructures of superalloy 718 during high temperature deformation. Mater. Sci. Eng. A 2008, 497, 479–486. [Google Scholar] [CrossRef]
- Yong, Z.; Fukang, W.; Duo, Q.; Yongquan, N.; Min, W. High temperature deformation behavior of Ti-4.5Al-6.5Mo-2Cr-2.6Nb-2Zr-1Sn titanium alloy. Rare Met. Mater. Eng. 2020, 49, 944–949. [Google Scholar]
- Mirzadeh, H.; Cabrera, J.M.; Najafizadeh, A. Constitutive relationships for hot deformation of austenite. Acta Mater. 2011, 59, 6441–6448. [Google Scholar] [CrossRef]
- McQueen, H.; Yue, S.; Ryan, N.; Fry, E. Hot working characteristics of steels in austenitic state. J. Mater. Process. Technol. 1995, 53, 293–310. [Google Scholar] [CrossRef]
- Zener, C.; Hollomon, J.H. Effect of Strain Rate Upon Plastic Flow of Steel. J. Appl. Phys. 1944, 15, 22–32. [Google Scholar] [CrossRef]
- Shi, C.; Mao, W.; Chen, X.-G. Evolution of activation energy during hot deformation of AA7150 aluminum alloy. Mater. Sci. Eng. A 2013, 571, 83–91. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Xin, Y.; Li, C.; Cheng, Y.; Chen, X.; Rashad, M.; Liu, B.; Liu, Y. Effect of Zener–Hollomon parameter on hot deformation behavior of CoCrFeMnNiC0.5 high entropy alloy. Mater. Sci. Eng. A 2019, 768, 138483. [Google Scholar] [CrossRef]
- Li, C.; Huang, L.; Zhao, M.; Guo, S.; Li, J. Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti–6Cr–5Mo–5V–4Al in single phase region. Mater. Sci. Eng. A 2021, 814, 141231. [Google Scholar] [CrossRef]
- Feng, R.; Bao, Y.; Ding, Y.; Chen, M.; Ge, Y.; Xie, L. Three different mathematical models to predict the hot deformation behavior of TA32 titanium alloy. J. Mater. Res. 2022, 37, 1309–1322. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Ma, Z.; Li, H.; Wang, Z.; Liu, Y. Hot Deformation Behavior and Microstructure Evolution of 14Cr ODS Steel. Materials 2018, 11, 1044. [Google Scholar] [CrossRef] [Green Version]
- Poliak, E.; Jonas, J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 1996, 44, 127–136. [Google Scholar] [CrossRef]
- Jin, Z.Y.; Li, N.N.; Yan, K.; Wang, J.; Bai, J.; Dong, H.B. Deformation mechanism and hot workability of extruded magnesium alloy AZ31. Acta Metall. Sin. (Engl. Lett.) 2018, 31, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Balasubrahmanyam, V.; Prasad, Y. Deformation behaviour of beta titanium alloy Ti–10V–4.5Fe–1.5Al in hot upset forging. Mater. Sci. Eng. A 2002, 336, 150–158. [Google Scholar] [CrossRef]
- Shi, X.H.; Cao, Z.H.; Fan, Z.Y.; Li, L.; Guo, R.P.; Qiao, J.W. Isothermal Compression and Concomitant Dynamic Recrystallization Behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy with Initial Martensitic Microstructure. J. Mater. Eng. Perform. 2020, 29, 3361–3372. [Google Scholar] [CrossRef]
- Chuan, W.; Liang, H. Hot deformation and dynamic recrystallization of a near-beta titanium alloy in the β single phase region. Vacuum 2018, 156, 384–401. [Google Scholar] [CrossRef]
- Shekhar, S.; Sarkar, R.; Kar, S.K.; Bhattacharjee, A. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy, Ti–5Al–5V–5Mo–3Cr. Mater. Des. 2014, 66, 596–610. [Google Scholar] [CrossRef]
- Li, C.-L.; Mi, X.-J.; Ye, W.-J.; Hui, S.-X.; Yu, Y.; Wang, W.-Q. Effect of solution temperature on microstructures and tensile properties of high strength Ti–6Cr–5Mo–5V–4Al alloy. Mater. Sci. Eng. A 2013, 578, 103–109. [Google Scholar] [CrossRef]
- Fan, X.; Yang, H.; Gao, P.; Zuo, R.; Lei, P. The role of dynamic and post dynamic recrystallization on microstructure refinement in primary working of a coarse grained two-phase titanium alloy. J. Mater. Process. Technol. 2016, 234, 290–299. [Google Scholar] [CrossRef]
Element | Al | Cr | V | Mo | Ti |
---|---|---|---|---|---|
Content (wt.%) | 2.8 | 5.9 | 5.2 | 5.2 | Bal. |
Parameters | Details |
---|---|
Deformation temperatures | 700 °C, 730 °C, 760 °C, 790 °C, 820 °C |
Strain rate | 0.001 s−1, 0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1 |
Heating rate | 10 °C/s |
Holding time before test | 300 s |
Cooling method after test | water quenching |
Reduction | 60% of height |
Phase Field | α | β | n1 | n | A | Q (kJ/mol) |
---|---|---|---|---|---|---|
α + β | 0.005225 | 0.0302 | 5.78 | 4.26352 | e49.13873 | 442.25 |
β | 0.00758 | 0.0368 | 4.85 | 3.61766 | e19.79592 | 206.86 |
Strain | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
---|---|---|---|---|---|---|
α + β phase field | 438.10 | 417.21 | 370.53 | 319.48 | 280.08 | 255.08 |
β phase field | 233.18 | 229.48 | 230.90 | 232.88 | 226.98 | 236.68 |
Conditions | 700 °C/0.01 s−1 | 730 °C/0.01 s−1 | 760 °C/0.01 s−1 | 790 °C/0.001 s−1 | 790 °C/0.1 s−1 | 790 °C/10 s−1 | 820 °C/0.001 s−1 |
---|---|---|---|---|---|---|---|
Average grain size (μm) | 71 | 56 | 51 | 17 | 22 | 26 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, S.; Zhang, S.; Liu, X.; Wu, X.; Zhang, S.; Zhou, G. High Temperature Deformation Behavior of Near-β Titanium Alloy Ti-3Al-6Cr-5V-5Mo at α + β and β Phase Fields. Crystals 2023, 13, 371. https://doi.org/10.3390/cryst13030371
Zhang H, Zhang S, Zhang S, Liu X, Wu X, Zhang S, Zhou G. High Temperature Deformation Behavior of Near-β Titanium Alloy Ti-3Al-6Cr-5V-5Mo at α + β and β Phase Fields. Crystals. 2023; 13(3):371. https://doi.org/10.3390/cryst13030371
Chicago/Turabian StyleZhang, Haoyu, Shuo Zhang, Shuai Zhang, Xuejia Liu, Xiaoxi Wu, Siqian Zhang, and Ge Zhou. 2023. "High Temperature Deformation Behavior of Near-β Titanium Alloy Ti-3Al-6Cr-5V-5Mo at α + β and β Phase Fields" Crystals 13, no. 3: 371. https://doi.org/10.3390/cryst13030371
APA StyleZhang, H., Zhang, S., Zhang, S., Liu, X., Wu, X., Zhang, S., & Zhou, G. (2023). High Temperature Deformation Behavior of Near-β Titanium Alloy Ti-3Al-6Cr-5V-5Mo at α + β and β Phase Fields. Crystals, 13(3), 371. https://doi.org/10.3390/cryst13030371