Research on Technology of 7075 Aluminum Alloy Processed by Variable Polarity TIG Additive Manufacturing Utilizing Nanoparticle-Reinforced Welding Wire with TiB2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Test Method
2.3. Analysis and Test Methods
2.3.1. Morphology and Microstructure
2.3.2. Mechanical Tests
3. Results and Discussion
3.1. Macroforming Characteristics
3.2. Microstructure of Sedimentary Layer
3.3. Mechanical Tests
3.3.1. Tensile Properties
3.3.2. Microhardness
4. Conclusions
- The TiB2-reinforced 7075 aluminum alloy wire was used for TIG arc additive manufacturing tests, and a well-formed 7075 aluminum alloy deposited specimens could be obtained utilizing the following welding parameters: welding current of 180 A, welding speed of 220 mm/min, wire feed speed of 100 mm/min., The top region of the tissue tensile strength and elongation can reach 361.8 MPa, and (9.5 ± 0.5)%,respectively, which is significantly higher than the tensile strength (279.4 ± 5.3) MPa of the 7075 aluminum alloy fabricated by arc-enhanced welding wire of the same material.
- The grains in the top region of the deposited parts are fine, and the second-phase particles are distributed at grain boundaries and within the grains. In the middle and bottom regions, the grains are significantly coarsened, and the second phase is mainly distributed at the grain boundaries. Tensile strength and hardness values in the top region are slightly higher compared to the middle and bottom regions.
- With the welding current increases, the heat input increases, and the number of pores inside the deposited parts is also increased, which lead to the increase of grain size, and decrease of the mechanical properties.
- The addition of TiB2 nanoparticles in the wire possesses a strengthening effect on the deposited layer. While, the plasticity is reduced accompanily.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shin, J.; Kim, T.; Kim, D.E.; Kim, D.; Kim, K. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications. J. Alloy. Compd. 2016, 698, 577–590. [Google Scholar] [CrossRef]
- Furong, C.; Guowei, L. Research Status of 7075 Aluminum. Alloys 2019, 1, 1–7. [Google Scholar]
- Taşdemir, A.; Nohut, S. An overview of wire arc additive manufacturing (WAAM) in shipbuilding industry. Ships Offshore Struct. 2020, 16, 797–814. [Google Scholar] [CrossRef]
- Zhang, X.S.; Chen, Y.J.; Hu, J.L. Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 2018, 97, 22–34. [Google Scholar] [CrossRef]
- Tabernero, I.; Paskual, A.; Álvarez, P.; Suárez, A. Study on arc welding processes for high deposition rate additive manufacturing. Procedia Cirp. 2018, 68, 358–362. [Google Scholar] [CrossRef]
- Sokoluk, M.; Cao, C.; Pan, S.; Li, X. Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075. Nat. Commun. 2019, 10, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, M.; Fiebig, S.; Hensel, J.; Dilger, K. Wire and Arc Additive manufacturing of aluminum. Metals 2019, 9, 608. [Google Scholar] [CrossRef] [Green Version]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Williams, S.; Martina, F.; Addison, A.; Ding, J.; Pardal, G.; Colegrove, P. Wire + arc additive manufacturing. Mater. Sci. Technol. 2016, 32, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Oropeza, D.; Hofmann, D.C.; Williams, K.; Firdosy, S.; Bordeenithikasem, P.; Sokoluk, M.; Liese, M.; Liu, J.; Li, X. Welding and additive manufacturing with nanoparticle-enhanced aluminum 7075 wire. J. Alloy. Compd. 2020, 834, 154987. [Google Scholar] [CrossRef] [PubMed]
- Morais, P.; Gomes, B.; Santos, P.; Gomes, M.; Gradinger, R.; Schnall, M.; Bozorgi, S.; Klein, T.; Fleischhacker, D.; Warzcok, P.; et al. Characterisation of a high-performance Al-Zn-Mg-Cu alloy designed for wire arc additive manufacturing. Materials 2020, 13, 1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, T.; Schnall, M.; Gomes, B.; Warczok, P.; Fleischhacker, D.; Morais, P. Wire-arc additive manufacturing of a novel high-performance Al-Zn-Mg-Cu alloy: Processing, characterization and feasibility demonstration. Addit. Manuf. 2021, 37, 101663. [Google Scholar] [CrossRef]
- Klein, T.; Schnall, M. Control of macro-/microstructure and mechanical properties of a wire-arc additive manufactured aluminium alloy. Int. J. Adv. Manuf. Technol. 2020, 108, 235–244. [Google Scholar] [CrossRef]
- Chang, T.; Liu, B.; Fang, X.; Huang, K.; Lu, B. Development status and prospect of aluminum alloy additive manufacturing. Aerosp. Mater. Technol. 2022, 52, 76–84. [Google Scholar] [CrossRef]
- Zhao, P.; Tang, C.; Pu, Z.; Li, Y.; Li, S. Microstructure and tensile properties of 5356 aluminum alloy made by TIG arc additive. J. Weld. 2020, 41, 65–70. [Google Scholar] [CrossRef]
- Ma, G.; Liu, D.; Shi, J.; Wang, R.; Niu, F.; Wu, D. Microstructure and mechanical properties of 7075 aluminum alloy prepared by wire and arc additive manufacturing. Aeronaut. Manuf. Technol. 2022, 65, 14–19. [Google Scholar] [CrossRef]
- Bermingham, M.; StJohn, D.; Easton, M.; Yuan, L.; Dargusch, M. Revealing the mechanisms of grain nucleation and formation during additive manufacturing. JOM J. Occup. Med. 2020, 72, 1065–1073. [Google Scholar] [CrossRef]
- Kannan, A.R.; Kumar, S.M.; Pramod, R.; Kumar, N.P.; Shanmugam, N.S.; Palguna, Y. Microstructure and mechanical properties of wire arc additive manufactured bi-metallic structure. Sci. Technol. Weld. Join. 2020, 26, 47–57. [Google Scholar] [CrossRef]
- Winterkorn, R.; Pittner, A.; Lahnsteiner, R.; Rethmeier, M. Wire Arc Additive Manufacturing of High Strength Al-Mg-Si Aluminum Alloys Using Similar Filler Wires with Addititional Grain Refiner. IIW-Annu. Assem. 2019, 4, 46–60. [Google Scholar]
Zn/wt.% | TiB2/wt.% | Mg/wt.% | Ti/wt.% | Cu/wt.% | Mn/wt.% | Cr/wt.% | Si/wt.% | Al/wt.% | |
---|---|---|---|---|---|---|---|---|---|
Wire | 5.52 | 3.5–4 | 2.3 | 0.1 | 1.4 | 0.3 | 0.22 | 0.2 | Bal. |
Sample | Welding Current(A) | Welding Speed (mm/min) | Wire Feeding Speed (mm/min) | Current Model | Quantity of Position Layer |
---|---|---|---|---|---|
1 | 180 | 220 220 220 | 100 100 100 | AC square wave AC square wave AC square wave | 40 |
2 | 190 | 40 | |||
3 | 200 | 40 |
B/wt.% | Ti/wt.% | Mg/wt.% | Cu/wt.% | Mn/wt.% | Cr/wt.% | Si/wt.% | Zn/wt.% | Al/wt.% |
---|---|---|---|---|---|---|---|---|
37.46 | 14.12 | 1.79 | 1.49 | 0.26 | 0.35 | 0.23 | 3.71 | 37.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Wu, Z.; Wang, T.; Jia, T.; Liu, C. Research on Technology of 7075 Aluminum Alloy Processed by Variable Polarity TIG Additive Manufacturing Utilizing Nanoparticle-Reinforced Welding Wire with TiB2. Crystals 2023, 13, 399. https://doi.org/10.3390/cryst13030399
Shen Z, Wu Z, Wang T, Jia T, Liu C. Research on Technology of 7075 Aluminum Alloy Processed by Variable Polarity TIG Additive Manufacturing Utilizing Nanoparticle-Reinforced Welding Wire with TiB2. Crystals. 2023; 13(3):399. https://doi.org/10.3390/cryst13030399
Chicago/Turabian StyleShen, Zhigang, Zhisheng Wu, Ting Wang, Tuosheng Jia, and Cuirong Liu. 2023. "Research on Technology of 7075 Aluminum Alloy Processed by Variable Polarity TIG Additive Manufacturing Utilizing Nanoparticle-Reinforced Welding Wire with TiB2" Crystals 13, no. 3: 399. https://doi.org/10.3390/cryst13030399
APA StyleShen, Z., Wu, Z., Wang, T., Jia, T., & Liu, C. (2023). Research on Technology of 7075 Aluminum Alloy Processed by Variable Polarity TIG Additive Manufacturing Utilizing Nanoparticle-Reinforced Welding Wire with TiB2. Crystals, 13(3), 399. https://doi.org/10.3390/cryst13030399