Experimental Investigation of the Mechanical Properties of Carbon/Basalt/SiC Nanoparticle/Polyester Hybrid Composite Materials
Abstract
:1. Introduction
2. Reinforcements and Fabrications
2.1. Reinforcement Used
2.2. Preparation of Composite Laminates
2.3. The Vacuum Bag Infusion Method
2.4. Inference on the Vacuum Bag Infusion Method
2.5. Experimental Setup
3. HPMC Results and Discussion
3.1. The Tensile Strength of the Composite Samples Produced
3.1.1. Visual Representation of Fractographical Tensile Fracture Specimens
3.1.2. Breakage of the Fiber Due to an Increase in the Transverse Stress
3.2. Flexural Characteristics of the Composites
3.3. Fractographical Image of Flexural Fracture Specimens
3.4. Impact Composites Characteristics
3.5. Hardness Characteristics of Composites
3.6. Dynamic Mechanical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramesh, V.; Karthik, K.; Arunkumar, K.; Unnam, N.K.; Ganesh, R.; Rajkumar, C. Effect of sawdust filler with Kevlar/basalt fiber on the mechanical properties epoxy–based polymer composite materials. Mater. Today Proc. 2022, 72, 2225–2230. [Google Scholar] [CrossRef]
- Ganesan, V. Optimisation of Mechanical Properties in Saw-Dust/Woven-Jute Fibre/Polyester Structural Composites under Liquid Nitrogen Environment Using Response Surface Methodology. Polymers 2021, 13, 2471. [Google Scholar] [CrossRef] [PubMed]
- Karthik, K.; Rajamani, D.; Manimaran, A.; Udayaprakash, J. Evaluation of tensile properties on Glass/Carbon/Kevlar fiber reinforced hybrid composites. Mater. Today Proc. 2020, 39, 1655–1660. [Google Scholar] [CrossRef]
- Gheith, M.H.; Aziz, M.A.; Ghori, W.; Saba, N.; Asim, M.; Jawaid, M.; Alothman, O.Y. Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. J. Mater. Res. Technol. 2018, 8, 853–860. [Google Scholar] [CrossRef]
- Yoganandam, K.; Ganeshan, P.; NagarajaGanesh, B.; Raja, K. Characterization studies on Calotropis procera fibers and their performance as reinforcements in epoxy matrix. J. Nat. Fibers 2019, 17, 1706–1718. [Google Scholar] [CrossRef]
- Kumar, S.; Zindani, D.; Bhowmik, S. Investigation of Mechanical and Viscoelastic Properties of Flax- and Ramie-Reinforced Green Composites for Orthopedic Implants. J. Mater. Eng. Perform. 2020, 29, 3161–3171. [Google Scholar] [CrossRef]
- Nagamadhu, M.; Jeyaraj, P.; Kumar, G.C.M. Influence of textile properties on dynamic mechanical behavior of epoxy composite reinforced with woven sisal fabrics. Sādhanā 2020, 45, 14. [Google Scholar] [CrossRef]
- Abhilash, S.; Singaravelu, D.L. A comparative study of mechanical, dynamic mechanical and morphological characterization of tampico and coir fibre-reinforced LLDPE processed by rotational moulding. J. Ind. Text. 2020, 51, 285S–310S. [Google Scholar] [CrossRef]
- Chaudhary, V.; Bajpai, P.K.; Maheshwari, S. An Investigation on Wear and Dynamic Mechanical behavior of Jute/Hemp/Flax Reinforced Composites and Its Hybrids for Tribological Applications. Fibers Polym. 2018, 19, 403–415. [Google Scholar] [CrossRef]
- Ramesh, V.; Anand, P. Evaluation of mechanical properties on Kevlar/Basalt fiber reinforced hybrid composites. Mater. Today Proc. 2021, 39, 1494–1496. [Google Scholar] [CrossRef]
- Junaedi, H.; Baig, M.; Dawood, A.; Albahkali, E. Mechanical and Physical Properties of Short Carbon Fiber and Nano-filler-Reinforced Polypropylene Hybrid Nanocomposites. Polymers 2020, 12, 2851. [Google Scholar] [CrossRef]
- Velumayil, R.; Palanivel, A. Hybridization Effect on Mechanical Properties of Basalt/Kevlar/Polyester Composite Laminates. Polymers 2022, 14, 1382. [Google Scholar] [CrossRef]
- Sathyaseelan, P.; Sellamuthu, P.; Palanimuthu, L. Influence of stacking sequence on mechanical properties of areca-kenaf fiberreinforced polymer hybrid composite. J. Nat. Fibers 2020, 19, 369–381. [Google Scholar]
- Yashas Gowda, T.G.; Vinod, A.; Madhu, P.; Kushvaha, V.; Sanjay, M.R.; Siengchin, S. A new study on flax-basalt-carbon fiber reinforced polyester/biopolyester hybrid composites. Polym. Compos. 2021, 42, 1891–1900. [Google Scholar]
- Thandavamoorthy, R.; Palanivel, A. Testing and Evaluation of Tensile and Impact Strength of Neem/Banyan Fiber-Reinforced Hybrid Composite. J. Test. Eval. 2020, 48, 647–655. [Google Scholar] [CrossRef]
- Srivathsan, A.; Vijayaram, B.; Ramesh, R.; Gokuldass, R. Investigation on Mechanical Behavior of Woven Fabric Glass/KevlarHybrid Composite Laminates Made of Varying FibreInplane Orientation and Stacking Sequence. Mater. Today Proc. 2017, 4, 8928–8937. [Google Scholar] [CrossRef]
- Yahaya, R.; Sapuan, S.; Jawaid, M.; Leman, Z.; Zainudin, E. Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application. Def. Technol. 2016, 12, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Fragassa, C.; Pavlovic, A.; Santulli, C. Mechanical and impact characterisation of flax and basalt fibrevinylester composites and their hybrids. Compos. Part B Eng. 2018, 137, 247–259. [Google Scholar] [CrossRef]
- Dhuban, S.B.; Karuppanan, S.; Mengal, A.N.; Patil, S.S. Effect of fiber orientation and ply stacking sequence on buckling be-haviour of basalt-carbon hybrid composite laminates. Indian J. Eng. Mater. Sci. 2017, 24, 187–193. [Google Scholar]
- Sarwar, A.; Mahboob, Z.; Zdero, R.; Bougherara, H. Mechanical Characterization of a new kevlar/flax/polyester hybrid composite in a sandwich structure. Polym. Test. 2020, 29, 106680. [Google Scholar] [CrossRef]
- Thooyavan, Y.; Kumaraswamidhas, L.; Raj, R.E.; Binoj, J. Influence of SiC micro and nano particles on tribological, water absorption and mechanical properties of basalt bidirectional mat/vinyl ester composites. Compos. Sci. Technol. 2022, 219, 109210. [Google Scholar] [CrossRef]
- Raja, T.; Anand, P.; Sundarraj, M.; Karthick, M.; Kannappan, A. Failure Analysis of Natural Fiber Reinforced Polymer Composite Leaf Spring. Int. J. Mech. Eng. Technol. 2018, 9, 686–689. [Google Scholar]
- Fayaz, H.; Karthik, K.; Christiyan, K.G.J.; Kumar, M.A.; Sivakumar, A.; Kaliappan, S.; Mohamed, M.J.S.; Subbiah, R.; Yishak, S. An Investigation on the Activation Energy and Thermal Degradation of Biocomposites of Jute/Bagasse/Coir/Nano TiO2/Epoxy-Reinforced Polyaramid Fibers. J. Nanomater. 2022, 2022, 3758212. [Google Scholar] [CrossRef]
- Karthik, K.; Prakash, J.U.; Binoj, J.S.; Mansingh, B.B. Effect of stacking sequence and silicon carbide nanoparticles on properties of carbon/glass/Kevlar fiber reinforced hybrid polymer composites. Polym. Compos. 2022, 43, 6096–6105. [Google Scholar] [CrossRef]
- Ravikumar, P.; Suresh, A.R.; Rajeshkumar, G. An Investigation into the Tribological Properties of Bidirectional Jute/Carbon Fiber Reinforced Polyester Hybrid Composites. J. Nat. Fibers 2022, 19, 943–953. [Google Scholar] [CrossRef]
- Lin, J.H.; Hsu, P.W.; Huang, C.H.; Lai, M.F.; Shiu, B.C.; Lou, C.W. A Study on Carbon Fiber Composites with Low-Melting-Point Polyester Nonwoven Fabric Reinforcement: A Highly Effective Electromagnetic Wave Shield Textile Material. Polymers 2022, 14, 1181. [Google Scholar] [CrossRef]
- Ibrahim, A.M.M.; Mohamed, A.F.A.; Fathelbab, A.M.R.; Essa, F.A. Enhancing the tribological performance of epoxy composites utilizing carbon nano fibers additives for journal bearings. Mater. Res. Express 2018, 6, 035307. [Google Scholar] [CrossRef]
- Chowdhury, I.R.; Pemberton, R.; Summerscales, J. Developments and Industrial Applications of Basalt Fibre Rein-forced Composite Materials. J. Compos. Sci. 2022, 6, 367. [Google Scholar] [CrossRef]
- Rajesh, D.; Lenin, N.; Cep, R.; Anand, P.; Elangovan, M. Experimental Investigation of Bi-Directional Flax with Ramie Fibre-Reinforced Phenol-Formaldehyde Hybrid Composites. Polymers 2022, 14, 4887. [Google Scholar] [CrossRef]
- Afzal, A.; Aabid, A.; Khan, A.; Khan, S.A.; Rajak, U.; Verma, T.N.; Kumar, R. Response surface analysis, clustering, and random forest regression of pressure in suddenly expanded high-speed aerodynamic flows. Aerosp. Sci. Technol. 2020, 107, 106318. [Google Scholar] [CrossRef]
- Afzal, A.; Ansari, Z.; Faizabdi, A.R.; Ramis, M.K. Parallelization Strategies for Computational Fluid Dynamics Software: State of the Art Review. Arch. Comput. Methods Eng. 2017, 24, 337–363. [Google Scholar] [CrossRef]
- Afzal, A.; Mujeebu, M.A. Thermo-Mechanical and Structural Performances of Automobile Disc Brakes: A Review of Numerical and Experimental Studies. Arch. Comput. Methods Eng. 2019, 26, 1489–1513. [Google Scholar] [CrossRef]
- Pinto, R.N.; Afzal, A.; D’Souza, L.V.; Ansari, Z.; Samee, A.D.M. Computational Fluid Dynamics in Turbomachinery: A Review of State of the Art. Arch. Comput. Methods Eng. 2017, 24, 467–479. [Google Scholar] [CrossRef]
- Jilte, R.; Afzal, A.; Panchal, S. A novel battery thermal management system using nano-enhanced phase change materials. Energy 2020, 219, 119564. [Google Scholar] [CrossRef]
- Ağbulut, Ü.; Sarıdemir, S.; Rajak, U.; Polat, F.; Afzal, A.; Verma, T.N. Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics. Energy 2021, 229, 120611. [Google Scholar] [CrossRef]
- Afzal, A.; Bhutto, J.K.; Alrobaian, A.; Kaladgi, A.R.; Khan, S.A. Modelling and Computational Experiment to Obtain Optimized Neural Network for Battery Thermal Management Data. Energies 2021, 14, 7370. [Google Scholar] [CrossRef]
- Mokashi, I.; Afzal, A.; Khan, S.A.; Abdullah, N.A.; Bin Azami, M.H.; Jilte, R.; Samuel, O.D. Nusselt number analysis from a battery pack cooled by different fluids and multiple back-propagation modelling using feed-forward networks. Int. J. Therm. Sci. 2021, 161, 106738. [Google Scholar] [CrossRef]
- Chandrashekar, A.; Chaluvaraju, B.; Afzal, A.; Vinnik, D.; Kaladgi, A.; Alamri, S.; Saleel, A.C.; Tirth, V. Mechanical and Corrosion Studies of Friction Stir Welded Nano Al2O3 Reinforced Al-Mg Matrix Composites: RSM-ANN Modelling Approach. Symmetry 2021, 13, 537. [Google Scholar] [CrossRef]
- Afzal, A.; Khan, S.A.; Saleel, C.A. Role of ultrasonication duration and surfactant on characteristics of ZnO and CuO nanofluids. Mater. Res. Express 2019, 6, 1150d8. [Google Scholar] [CrossRef]
- Afzal, A.; Nawfal, I.; Mahbubul, I.M.; Kumbar, S.S. An overview on the effect of ultrasonication duration on different properties of nanofluids. J. Therm. Anal. Calorim. 2019, 135, 393–418. [Google Scholar] [CrossRef]
- Afzal, A.; Yashawantha, K.M.; Aslfattahi, N.; Saidur, R.; Razak, R.K.A.; Subbiah, R. Back propagation modeling of shear stress and viscosity of aqueous Ionic-MXene nanofluids. J. Therm. Anal. Calorim. 2021, 145, 2129–2149. [Google Scholar] [CrossRef]
- Bakır, H.; Ağbulut, Ü.; Gürel, A.E.; Yıldız, G.; Güvenç, U.; Soudagar, M.E.M.; Hoang, A.T.; Deepanraj, B.; Saini, G.; Afzal, A. Forecasting of future greenhouse gas emission trajectory for India using energy and economic indexes with various metaheuristic algorithms. J. Clean. Prod. 2022, 360, 131946. [Google Scholar] [CrossRef]
- Samuel, O.D.; Waheed, M.A.; Taheri-Garavand, A.; Verma, T.N.; Dairo, O.U.; Bolaji, B.O.; Afzal, A. Prandtl number of optimum biodiesel from food industrial waste oil and diesel fuel blend for diesel engine. Fuel 2021, 285, 119049. [Google Scholar] [CrossRef]
- Samuel, O.D.; Okwu, M.O.; Oyejide, O.J.; Taghinezhad, E.; Afzal, A.; Kaveh, M. Optimizing biodiesel production from abundant waste oils through empirical method and grey wolf optimizer. Fuel 2020, 281, 118701. [Google Scholar] [CrossRef]
- Sharath, B.; Venkatesh, C.; Afzal, A.; Aslfattahi, N.; Aabid, A.; Baig, M.; Saleh, B. Multi Ceramic Particles Inclusion in the Aluminium Matrix and Wear Characterization through Experimental and Response Surface-Artificial Neural Networks. Materials 2021, 14, 2895. [Google Scholar] [CrossRef]
- Afzal, A.; Saleel, C.A.; Badruddin, I.A.; Khan, T.Y.; Kamangar, S.; Mallick, Z.; Samuel, O.D.; Soudagar, M.E. Human thermal comfort in passenger vehicles using an organic phase change material—An experimental investigation, neural network modelling, and optimization. Build. Environ. 2020, 180, 107012. [Google Scholar] [CrossRef]
- Afzal, A.; Mokashi, I.; Khan, S.A.; Abdullah, N.A.; Bin Azami, M.H. Optimization and analysis of maximum temperature in a battery pack affected by low to high Prandtl number coolants using response surface methodology and particle swarm optimization algorithm. Numer. Heat Transf. Part A Appl. 2020, 79, 406–435. [Google Scholar] [CrossRef]
- Afzal, A.; Khan, S.A.; Islam, T.; Jilte, R.D.; Khan, A.; Soudagar, M.E.M. Investigation and back-propagation modeling of base pressure at sonic and supersonic Mach numbers. Phys. Fluids 2020, 32, 096109. [Google Scholar] [CrossRef]
- Sathish, T.; Kaladgi, A.R.R.; Mohanavel, V.; Arul, K.; Afzal, A.; Aabid, A.; Baig, M.; Saleh, B. Experimental Investigation of the Friction Stir Weldability of AA8006 with Zirconia Particle Reinforcement and Optimized Process Parameters. Materials 2021, 14, 2782. [Google Scholar] [CrossRef]
- Afzal, A.; Samee, A.D.M.; Javad, A.; Shafvan, S.A.; Ajinas, P.V.; Kabeer, K.M.A. Heat transfer analysis of plain and dimpled tubes with different spacings. Heat Transf. 2018, 47, 556–568. [Google Scholar] [CrossRef]
- Elumalai, P.V.; Dhineshbabu, N.R.; Varsala, P.; Devi, S.A.; Sitaramamurty, A.S.S.M.; Saleel, C.A.; Hasan, N. Effects of asna fibre reinforced with epoxy resin with and without steel wire mesh and simulation of car bumper. Mater. Res. Express 2022, 9, 055301. [Google Scholar] [CrossRef]
- Rao, H.J.; Nagabhooshanam, N.; Kumar, D.S.; Sahu, S.K.; Indian, R.V.; Jyothirmai, G.; Ravindra, M.; Mohanavel, V. Dynamic mechanical, ballistic and tribological behavior of luffa aegyptiaca fiber reinforced coco husk biochar epoxy composite. Polym. Compos. 2023, 1, 27215. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Nagabhooshanam, N.; Manoj, E.; Thiyagu, M.; Pravil, P.P. Effect of black rice husk ash biosilica on mechanical, wear, and fatigue behavior of stacked aloevera/roselle and glass fiber reinforced epoxy composite. Polym. Compos. 2022, 43, 7335–7344. [Google Scholar]
Reinforcements | Stability (MPa) | Young’s Modulus (GPa) | Poisson’s Ratio | Weave Type | |
---|---|---|---|---|---|
Basalt | 2000 | 72.35 | 2.5 | 0.2 | woven |
Carbon | 4000 | 75.8 | 1.9 | 0.3 | woven |
Nano SiC | 241 | 70.25 | 1.7 | 0.2 | particulate |
Samples | Orientation Fiber | Arrangement | % of Matrix | % of Fibers | Total wt% of Composite |
---|---|---|---|---|---|
S1 | BBBBBB | Polyester | 60 | 40 | 100 |
S2 | CCCCCC | Polyester | 60 | 40 | 100 |
S3 | CBCBCB | Polyester | 60 | 40 | 100 |
S4 | CBCBCB | Polyester +5% Sic | 55 | 40 | 100 |
S5 | CBCBCB | Polyester +10% Sic | 50 | 40 | 100 |
S6 | CBCBCB | Polyester +15% Sic | 45 | 40 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karthik, K.; Rajamani, D.; Venkatesan, E.P.; Shajahan, M.I.; Rajhi, A.A.; Aabid, A.; Baig, M.; Saleh, B. Experimental Investigation of the Mechanical Properties of Carbon/Basalt/SiC Nanoparticle/Polyester Hybrid Composite Materials. Crystals 2023, 13, 415. https://doi.org/10.3390/cryst13030415
Karthik K, Rajamani D, Venkatesan EP, Shajahan MI, Rajhi AA, Aabid A, Baig M, Saleh B. Experimental Investigation of the Mechanical Properties of Carbon/Basalt/SiC Nanoparticle/Polyester Hybrid Composite Materials. Crystals. 2023; 13(3):415. https://doi.org/10.3390/cryst13030415
Chicago/Turabian StyleKarthik, Krishnasamy, Devaraj Rajamani, Elumalai Perumal Venkatesan, Mohamed Iqbal Shajahan, Ali A. Rajhi, Abdul Aabid, Muneer Baig, and Bahaa Saleh. 2023. "Experimental Investigation of the Mechanical Properties of Carbon/Basalt/SiC Nanoparticle/Polyester Hybrid Composite Materials" Crystals 13, no. 3: 415. https://doi.org/10.3390/cryst13030415
APA StyleKarthik, K., Rajamani, D., Venkatesan, E. P., Shajahan, M. I., Rajhi, A. A., Aabid, A., Baig, M., & Saleh, B. (2023). Experimental Investigation of the Mechanical Properties of Carbon/Basalt/SiC Nanoparticle/Polyester Hybrid Composite Materials. Crystals, 13(3), 415. https://doi.org/10.3390/cryst13030415