Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Conventional Gemological Features
3.2. Composition and Crystal Structure Analysis of Scapolite
3.2.1. X-ray Fluorescence Spectrum and EPMA Analysis
3.2.2. XRD Analysis
3.3. Spectroscopy Analysis of Scapolite
3.3.1. Infrared Spectra Analysis
3.3.2. Raman Spectra Analysis
3.3.3. UV-Vis Analysis
3.4. Luminescence Properties of Scapolite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shaw, D.M. The Geochemistry of Scapolite Part I. Previous Work and General Mineralogy. J. Petrol. 1960, 1, 218–260. [Google Scholar] [CrossRef]
- Choudhary, G. Purple scapolite. Gems Gemol. 2015, 51, 202–203. [Google Scholar]
- Milkey, R.G. Infrared Spectra of Some Tectosilicates. Am. Mineral. 1960, 45, 990–1007. [Google Scholar]
- Newton, R.C.; Goldsmith, J.R. Stability of the end-member scapolites: 3NaAlSi3O8·NaCl, 3CaAl2Si2O8·CaCO3, 3CaAl2Si2O8·CaSO4. Z. Krist. Cryst. Mater. 1976, 143, 333–353. [Google Scholar] [CrossRef]
- Litvinenko, A.K.; Moiseeva, S.B.; Odinaev, S.A.; Utenkov, V.A. Geology of the Chernogorskoe Gem-Quality Scapolite Deposit (Central Pamirs, Tajikistan). Geol. Ore Depos. 2019, 61, 481–493. [Google Scholar] [CrossRef]
- Almeida, K.M.F.; Jenkins, D.M. A comparison between the stability fields of a Cl-rich scapolite and the end-member marialite. Am. Mineral. 2019, 104, 1788–1799. [Google Scholar] [CrossRef]
- Filiberto, J.; Treiman, A.H.; Giesting, P.A.; Goodrich, C.A.; Gross, J. High-temperature chlorine-rich fluid in the martian crust: A precursor to habitability. Earth Planet. Sci. Lett. 2014, 401, 110–115. [Google Scholar] [CrossRef]
- Zeng, L.; Zhao, X.; Hammerli, J.; Fan, T.; Spandler, C. Tracking fluid sources for skarn formation using scapolite geochemistry: An example from the Jinshandian iron skarn deposit, Eastern China. Miner. Depos. 2019, 55, 1029–1046. [Google Scholar] [CrossRef]
- Pauling, L. The structure of some sodium and calcium aluminosilicates. Proc. Natl. Acad. Sci. USA 1930, 16, 453–459. [Google Scholar] [CrossRef]
- Schiebold, E.; Seumel, G. Über die Kristallstruktur von Skapolith. Z. Krist. Cryst. Mater. 1932, 81, 110–134. [Google Scholar] [CrossRef]
- Papike, J.J.; Zoltai, T. The crystal structure of a marialite scapolite. Am. Mineral. 1965, 50, 641–655. [Google Scholar]
- Antao, S.M.; Hassan, I. The structures of marialite (Me 6) and meionite (Me 93) in space groups P42/n and I4/m, and the absence of phase transitions in the scapolite series. Powder Diffr. 2011, 26, 119–125. [Google Scholar] [CrossRef]
- Wehrenberg, J.P. The Infrared Absorption Spectra of Scapolite. Am. Mineral. 1971, 56, 1639. [Google Scholar]
- Swayze, G.A.; Clark, R.N. Infrared-spectra and crystal-chemistry of scapolites–implications for martian mineralogy. J. Geophys. Res. Solid Earth Planets 1990, 95, 14481–14495. [Google Scholar] [CrossRef]
- Aierken, S.; Kusachi, I.; Kobayashi, S.; Atobe, K.; Yamashita, N. Photoluminescence spectra of S2− center in natural and heat-treated scapolites. Phys. Chem. Miner. 2008, 35, 137–145. [Google Scholar] [CrossRef]
- Blumentritt, F.; Latouche, C.; Morizet, Y.; Caldes, M.T.; Jobic, S.; Fritsch, E. Unravelling the Origin of the Yellow-Orange Luminescence in Natural and Synthetic Scapolites. J. Phys. Chem. Lett. 2020, 11, 4591–4596. [Google Scholar] [CrossRef]
- Xu, B.; Hou, Z.Q.; Griffin, W.L.; Zheng, Y.C.; Wang, T.; Guo, Z.; Hou, J.; Santosh, M.; O’Reilly, S.Y. Cenozoic lithospheric architecture and metallogenesis in Southeastern Tibet. Earth-Sci. Rev. 2021, 214, 03472. [Google Scholar] [CrossRef]
- Feininger, T. An Introduction to the Rock-Forming Minerals (third edition). Can. Mineral. 2013, 51, 663–664. [Google Scholar] [CrossRef]
- Pezzotta, F.; Superchi, M.; Gambini, E.; Castaman, E. Yellow Scapolite from Ihosy, Madagascar. Gems Gemol. 2010, 46, 274–279. [Google Scholar]
- Schipf, R.G. Color Encyclopedia of Gemstones (Book Review). Libr. J. 1978, 103, 673. [Google Scholar]
- Ulbrich, H.H. Crystallographic data and refractive indices of scapolites. Am. Mineral. 1973, 58, 81–89. [Google Scholar]
- Xu, B.; Hou, Z.Q.; Griffin, W.L.; Lu, Y.; Belousova, E.; Xu, J.F.; O’Reilly, S.Y. Recycled volatiles determine fertility of porphyry deposits in collisional settings. Am. Mineral. 2021, 106, 656–661. [Google Scholar] [CrossRef]
- Xu, B.; Hou, Z.Q.; Griffin, W.L.; O’Reilly, S.Y. Apatite halogens and Sr–O and zircon Hf–O isotopes: Recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chem. Geol. 2022, 605, 120924. [Google Scholar] [CrossRef]
- Sokolova, E.; Hawthorne, F.C. Hawthorne.The crystal chemistry of the scapolite-group minerals. I. Crystal structure and long-range order. Can. Mineral. 2009, 46, 1527–1554. [Google Scholar] [CrossRef]
- Schwarcz, H.P.; Speelman, E.L. Determination of sulfur and carbon coordination in scapolite by infra-red absorption spectrophotometry. Am. Mineral. 1965, 50, 656. [Google Scholar]
- You, J.L.; Jiang, G.C.; Hou, H.Y.; Chen, H.; Wu, Y.Q.; Xu, K.D. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates. J. Raman Spectrosc. 2005, 36, 237–249. [Google Scholar] [CrossRef]
- Mysen, B.O.; Virgo, D.; Scarfe, C.M. Scarfe.Relations between the anionic structure and viscosity of silicate melts; a Raman spectroscopic study. Am. Mineral. 1980, 65, 690–710. [Google Scholar]
- McMillan, P. Structural studies of silicate glasses and melts; applications and limitations of Raman spectroscopy? Am. Mineral. 1984, 69, 622–644. [Google Scholar]
- McMillan, P.; Wolf, G.; Poe, B.T. Vibrational spectroscopy of silicate liquids and glasses. Chem. Geol. 1992, 96, 351–366. [Google Scholar] [CrossRef]
- Pan, F.; Yu, X.; Mo, X. Raman spectra of framework silicate minerals. J. Chin. Ceram. Soc. 2009, 37, 2043. [Google Scholar]
- Akaogi, M.; Ross, N.L.; McMillan, P.; Navrotsky, A. The Mg2SiO4 polymorphs (olivine, modified spinel and spinel) thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations. Am. Mineral. 1984, 69, 499–512. [Google Scholar]
- Xu, K.D.; Jiang, G.C.; Huang, S.P.; You, J.L. A study on the bonding structure of CaO-SiO2 slag by means of molecular dynamics simulation. Sci. China Ser. E Technol. Sci. 1999, 42, 77–82. [Google Scholar] [CrossRef]
- Burns, R.G. Mineralogical Applications of Crystal Field Theory; Cambridge at the University Press: Cambridge, UK, 1970. [Google Scholar]
- Hofmeister, A.M.; Rossman, G.R. Color in feldspars. Rev. Mineral. 1983, 2, 271–280. [Google Scholar]
- Krzemnicki, M.S. Red and green labradorite feldspar from Congo. J. Gemmol. 2004, 29, 15–23. [Google Scholar] [CrossRef]
- Hofmeister, A.M.; Rossman, G.R. Exsolution of metallic copper from Lake Country labradorite. Geology 1985, 13, 644–647. [Google Scholar] [CrossRef]
- Chen, Z. Discussion on the Color Genesis of ‘Tibet Red Feldspar’; China University of Geosciences: Wuhan, China, 2014. [Google Scholar]
- Quinn, E.P.; Muhlmeister, S. Albitic “moonstone” from the Morogoto region, Tanzania. Gems Gemol. 2005, 41, 60–61. [Google Scholar]
- Ma, Y.; He, J.; Aziguli, R.; Bahadeer, R.; Aierken, S. Photoluminescence of Sinthetic Scapolite Na4Ca4Al6Si9O24Phosphors Activated with Ce3+ and Tb3+ and Energy Transfer from Ce3+ to Tb3+. Spectrosc. Spectr. Anal. 2015, 11, 3241–3246. [Google Scholar]
Sample Number | Color | Luster | Transparency | Specific Gravity | Refractive Index | Birefringence |
---|---|---|---|---|---|---|
cl-1 | Colorless | Vitreous luster | Opaque | 2.65 | 1.543–1.564 | 0.021 |
cl-2 | Colorless | Vitreous luster | Opaque | 2.64 | 1.548–1.562 | 0.014 |
cl-3 | Colorless | Vitreous luster | Opaque | 2.64 | 1.545–1.561 | 0.016 |
y-1 | Yellow | Vitreous luster | Opaque | 2.65 | 1.535–1.562 | 0.027 |
y-2 | Yellow | Vitreous luster | Opaque | 2.65 | 1.546–1.560 | 0.014 |
y-3 | Yellow | Vitreous luster | Opaque | 2.64 | 1.543–1.558 | 0.015 |
y-4 | Yellow | Vitreous luster | Opaque | 2.64 | 1.543–1.562 | 0.019 |
y-7 | Yellow | Vitreous luster | Opaque | 2.63 | 1.545–1.560 | 0.015 |
y-9 | Yellow | Vitreous luster | Opaque | 2.64 | 1.545–1.561 | 0.016 |
y-10 | Yellow | Vitreous luster | Opaque | 2.65 | 1.545–1.561 | 0.016 |
M-O Lattice Vibration | Si-O-Si Bending Vibration | Si-Obr Symmetric Bending Vibrations | AlⅣ-Onb Symmetric Stretching Vibrations | Si -Onb Symmetric Stretching Vibrations | |
---|---|---|---|---|---|
Raman characteristic peak/cm−1 | 108 cm−1, 162 cm−1 263 cm−1, 300 cm−1 336 cm−1, 360 cm−1 | 459 cm−1 | 537 cm−1 | 773 cm−1 | 990 cm−1 1110 cm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, Y.; Guo, Q.; Zhang, S.; Liao, L. Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites. Crystals 2023, 13, 462. https://doi.org/10.3390/cryst13030462
Rao Y, Guo Q, Zhang S, Liao L. Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites. Crystals. 2023; 13(3):462. https://doi.org/10.3390/cryst13030462
Chicago/Turabian StyleRao, Yinghua, Qingfeng Guo, Sixue Zhang, and Libing Liao. 2023. "Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites" Crystals 13, no. 3: 462. https://doi.org/10.3390/cryst13030462
APA StyleRao, Y., Guo, Q., Zhang, S., & Liao, L. (2023). Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites. Crystals, 13(3), 462. https://doi.org/10.3390/cryst13030462