Research on the Microstructure and Properties of a Flux-Cored Wire Gas-Shielded Welded Joint of A710 Low-Alloy High-Strength Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Analysis
3.1. Macroscopic and Microstructure Morphology
3.2. Hardness Distribution
3.3. Mechanical Properties Analysis
3.3.1. Tensile Property
3.3.2. Low-Temperature Impact Properties
3.3.3. Bending Property
3.3.4. Fatigue Property
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodrigues, T.A.; Duarte, V.; Avila, J.A.; Santos, T.G.; Miranda, R.M.; Oliveira, J.P. Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical properties. Addit. Manuf. 2019, 27, 440–450. [Google Scholar] [CrossRef]
- Wang, Z.L. Control of microstructure and properties of welded joints of heavy structures of low alloy high strength steels. Key Eng. Mater. 2019, 814, 171–175. [Google Scholar] [CrossRef]
- Berdnikova, O.; Pozniakov, V.; Bernatskyi, A.; Alekseienko, T.; Sydorets, V. Effect of the structure on the mechanical properties and cracking resistance of welded joints of low-alloyed high-strength steels. Procedia Struct. Integr. 2019, 16, 89–96. [Google Scholar] [CrossRef]
- Zeng, H.L.; Wang, C.J.; Yang, X.M.; Wang, X.S.; Liu, R. Automatic welding technologies for long-distance pipelines by use of all-position self-shielded flux cored wires. Nat. Gas Ind. B 2014, 1, 113–118. [Google Scholar]
- Bracarense, A.Q.; Souza, R.; Costa, M.C.M.; Faria, P.E.; Liu, S. Welding current effect on diffusible hydrogen content in flux cored arc weld metal. J. Braz. Soc. Mech. Sci. Eng. 2002, 24, 278–285. [Google Scholar] [CrossRef]
- Li, Z.; Srivatsan, T.S.; Wang, Y.; Zhang, W.; Li, Y. The spectral analysis of different flux-cored wires during arc welding of metals. Mater. Manuf. Process. 2012, 27, 664–669. [Google Scholar] [CrossRef]
- Hayat, F.; Uzun, H. Microstructural and mechanical properties of dual-phase steels welded using GMAW with solid and flux-cored welding wires. Int. J. Mater. Res. 2012, 103, 828–837. [Google Scholar] [CrossRef]
- Zou, Z.; Liu, Z.; Ai, X.; Wu, D. Effect of aluminum on microstructure and mechanical properties of weld metal of Q960 steel. Crystals 2022, 12, 26. [Google Scholar] [CrossRef]
- Ilić, A.; Miletić, I.; Nikolić, R.R.; Marjanović, V.; Ulewicz, R.; Stojanović, B.; Ivanović, L. Analysis of influence of the welding procedure on impact toughness of welded joints of the high-strength low-alloyed steels. Appl. Sci. 2020, 10, 2205. [Google Scholar] [CrossRef] [Green Version]
- Kornokar, K.; Nematzadeh, F.; Mostaan, H.; Sadeghian, A.; Moradi, M.; Waugh, D.G.; Bodaghi, M. Influence of heat input on microstructure and mechanical properties of gas tungsten arc welded HSLA S500MC steel joints. Metals 2022, 12, 565. [Google Scholar] [CrossRef]
- Oktadinata, H.; Winarto, W.; Siradj, E.S. Microstructure and impact toughness of flux-cored arc welded SM570-TMC steel at low and high heat input. Mater. Sci. Forum 2020, 991, 3–9. [Google Scholar] [CrossRef]
- Ni, Z.; Hu, F.; Li, Y.; Lin, S.; Cai, X. Microstructure and mechanical properties of the ternary gas shielded narrow-gap GMA welded joint of high-strength steel. Crystals 2022, 12, 1566. [Google Scholar] [CrossRef]
- Wen, C.; Wang, Z.; Deng, X.; Wang, G.; Misra, R.D.K. Effect of Heat Input on the Microstructure and Mechanical Properties of Low Alloy Ultra-High Strength Structural Steel Welded Joint. Steel Res. Int. 2018, 89, 1700500. [Google Scholar] [CrossRef]
- Ilić, A.; Ivanović, L.; Josifović, D.; Lazić, V.; Živković, J. Effects of welding on mechanical and microstructural characteristics of high-strength low-alloy steel joints. IOP Conf. Ser. Mater. Sci. Eng. 2018, 393, 012020. [Google Scholar] [CrossRef]
- Song, F.; Yin, C.; Hu, F.; Wu, K. Effects of Mn-depleted zone formation on acicular ferrite transformation in weld metals under high heat input welding. Materials 2022, 15, 8477. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, H.V.; Shi, G. Characterization of Inclusions in Clean Steels: A Review Including the Statistics of Extremes Methods. Prog. Mater. Sci. 2003, 48, 457–520. [Google Scholar] [CrossRef]
Base Metal | C | Mn | Si | P | S | Nb | Ti | Ni | Cu | Cr | Mo | Ni | Al |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A710 | ≤0.07 | 0.4~0.7 | ≤0.4 | ≤0.025 | ≤0.025 | 0.02~0.05 | ≤0.025 | 0.7~1.4 | 1.0~1.3 | 0.6~0.9 | 0.15~0.25 | 0.7~1.4 | ≤0.05 |
Flux-Cored Wire | Mn | Si | Cr | Ni | Mo | V | Nb | Al | Cu |
---|---|---|---|---|---|---|---|---|---|
E81T1-Ni1M | ≤1.4 | ≤0.8 | ≤0.2 | 0.6~1.2 | ≤0.2 | ≤0.08 | ≤0.05 | ≤2.0 | ≤0.3 |
Line | Current (A) | Voltage (V) | Welding Speed (cm/min) | Heat Input (kJ/cm) | Welding Sequence Diagram |
---|---|---|---|---|---|
1 | 250–280 | 26–28 | 20 | 15 | |
2 | 250–280 | 26–28 | 19 | 15 | |
3–4 | 250–280 | 26–28 | 35 | 8.6 | |
5–7 | 250–280 | 26–28 | 42 | 7.6 |
Sample Number | Tensile Strength/MPa | Yield Strength/MPa | Break Elongation/% | Reduction in Area/% | ||||
---|---|---|---|---|---|---|---|---|
Single | Average | Single | Average | Single | Average | Single | Average | |
LS-1# | 645 | 650 | 644 | 649 | 12 | 12 | 44 | 43 |
LS-2# | 655 | 654 | 11 | 41 |
Sample Number | Test Temperature /°C | Location of Notch | Low Temperature Impact AKV/J | Average Low Temperature Impact AKV/J |
---|---|---|---|---|
CJ-1# | −40 | Weld | 74 | 71 |
CJ-2# | 69 | |||
CJ-3# | 69 | |||
CJ-4# | HAZ | 257 | 253 | |
CJ-5# | 253 | |||
CJ-6# | 249 |
Sample Number | Pressure Head Diameter | Bending Angle | Bending Results | |
---|---|---|---|---|
WQ-1# | 40 mm | 180° | ||
WQ-2# | ||||
WQ-3# | ||||
WQ-4# |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yang, Z.; Du, L. Research on the Microstructure and Properties of a Flux-Cored Wire Gas-Shielded Welded Joint of A710 Low-Alloy High-Strength Steel. Crystals 2023, 13, 484. https://doi.org/10.3390/cryst13030484
Wang X, Yang Z, Du L. Research on the Microstructure and Properties of a Flux-Cored Wire Gas-Shielded Welded Joint of A710 Low-Alloy High-Strength Steel. Crystals. 2023; 13(3):484. https://doi.org/10.3390/cryst13030484
Chicago/Turabian StyleWang, Xing, Zhibin Yang, and Lingzhi Du. 2023. "Research on the Microstructure and Properties of a Flux-Cored Wire Gas-Shielded Welded Joint of A710 Low-Alloy High-Strength Steel" Crystals 13, no. 3: 484. https://doi.org/10.3390/cryst13030484
APA StyleWang, X., Yang, Z., & Du, L. (2023). Research on the Microstructure and Properties of a Flux-Cored Wire Gas-Shielded Welded Joint of A710 Low-Alloy High-Strength Steel. Crystals, 13(3), 484. https://doi.org/10.3390/cryst13030484