Mechanochemically Synthesized Chalcogenide Cu3BiS3 Nanocrystals in an Environmentally Friendly Manner for Solar Cell Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Characterization
3.1.1. X-ray Diffraction
3.1.2. Raman Spectroscopy
3.2. Microstructural Characterization
3.3. Morphological Characterization
3.4. Specific Surface Area Measurement
3.5. Optical Properties
3.5.1. UV–Vis Spectroscopy
3.5.2. Micro-Photoluminescence Spectroscopy
3.6. Optoelectrical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kehoe, A.B.; Temple, D.J.; Watson, G.W.; Scanlon, D.O. Cu(3)MCh(3) (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: Insights from theory. PCCP 2013, 15, 15477–15484. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, S.G.; Kheraj, V. A comprehensive review on synthesis and characterizations of Cu3BiS3 thin films for solar photovoltaics. Nanotechnol. Environ. Eng. 2017, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Gerein, N.J.; Haber, J.A. One-step synthesis and optical and electrical properties of thin film Cu3BiS3 for use as a solar absorber in photovoltaic devices. Chem. Mater. 2006, 18, 6297–6302. [Google Scholar] [CrossRef]
- Viezbicke, B.D.; Birnie, D.P. Solvothermal Synthesis of Cu3BiS3 Enabled by Precursor Complexing. Acs Sustain. Chem. Eng. 2013, 1, 306–308. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, H.X.; Shi, B.Z.; Guo, L.L.; Zhang, Y.J.; An, X.; Zhang, H.; Yang, S.P. Hydrophilic Cu3BiS3 Nanoparticles for Computed Tomography Imaging and Photothermal Therapy. Part. Part. Syst. Charact. 2015, 32, 668–679. [Google Scholar] [CrossRef]
- Lu, R.; Zhu, J.Y.; Yu, C.W.; Nie, Z.L.; Gao, Y. Cu(3)BiS(3)Nanocrystals as Efficient Nanoplatforms for CT Imaging Guided Photothermal Therapy of Arterial Inflammation. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef]
- Li, A.; Li, X.; Yu, X.J.; Li, W.; Zhao, R.Y.; An, X.; Cui, D.X.; Chen, X.Y.; Li, W.W. Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window. Biomaterials 2017, 112, 164–175. [Google Scholar] [CrossRef]
- Estrella, V.; Nair, M.T.S.; Nair, P.K. Semiconducting Cu3BiS3 thin films formed by the solid-state reaction of CuS and bismuth thin films. Semicond. Sci. Technol. 2003, 18, 190–194. [Google Scholar] [CrossRef]
- Chen, D.; Shen, G.; Tang, K.; Liu, X.; Qian, Y.; Zhou, G. The synthesis of Cu3BiS3 nanorods via a simple ethanol-thermal route. J. Cryst. Growth 2003, 253, 512–516. [Google Scholar] [CrossRef]
- Li, J.J.; Han, X.X.; Zhao, Y.; Li, J.; Wang, M.; Dong, C. One-step synthesis of Cu3BiS3 thin films by a dimethyl sulfoxide (DMSO)-based solution coating process for solar cell application. Sol. Energy Mater. Sol. Cells 2018, 174, 593–598. [Google Scholar] [CrossRef]
- Manimozhi, T.; Archana, J.; Ramamurthi, K. Shape controlled synthesis of Cu3BiS3 nano- and microstructures by PEG assisted solvothermal method and functional properties. Ceram. Int. 2018, 44, 15385–15392. [Google Scholar] [CrossRef]
- Murali, B.; Krupanidhi, S.B. Tailoring the Band Gap and Transport Properties of Cu3BiS3 Nanopowders for Photodetector Applications. J. Nanosci. Nanotechnol. 2013, 13, 3901–3909. [Google Scholar] [CrossRef]
- Yan, J.M.; Yu, J.; Zhang, W.J.; Li, Y.N.; Yang, X.Y.; Li, A.M.; Yang, X.K.; Wang, W.; Wang, J.Q. Synthesis of Cu3BiS3 and AgBiS2 crystallites with controlled morphology using hypocrellin template and their catalytic role in the polymerization of alkylsilane. J. Mater. Sci. 2012, 47, 4159–4166. [Google Scholar] [CrossRef]
- Aup-Ngoen, K.; Thongtem, S.; Thongtem, T. Cyclic microwave-assisted synthesis of Cu3BiS3 dendrites using L-cysteine as a sulfur source and complexing agent. Mater. Lett. 2011, 65, 442–445. [Google Scholar] [CrossRef]
- Zeng, Y.P.; Li, H.X.; Qu, B.H.; Xiang, B.Y.; Wang, L.; Zhang, Q.L.; Li, Q.H.; Wang, T.H.; Wang, Y.G. Facile synthesis of flower-like Cu3BiS3 hierarchical nanostructures and their electrochemical properties for lithium-ion batteries. Crystengcomm 2012, 14, 550–554. [Google Scholar] [CrossRef]
- Shen, G.Z.; Chen, D.; Tang, K.B.; Qian, Y.T. Synthesis of ternary sulfides Cu(Ag)-Bi-S coral-shaped crystals from single-source precursors. J. Cryst. Growth 2003, 257, 293–296. [Google Scholar] [CrossRef]
- Deng, M.J.; Shen, S.L.; Zhang, Y.J.; Xu, H.R.; Wang, Q.B. A generalized strategy for controlled synthesis of ternary metal sulfide nanocrystals. New J. Chem. 2014, 38, 77–83. [Google Scholar] [CrossRef]
- Yan, C.; Gu, E.N.; Liu, F.Y.; Lai, Y.Q.; Li, J.; Liu, Y.X. Colloidal synthesis and characterizations of wittichenite copper bismuth sulphide nanocrystals. Nanoscale 2013, 5, 1789–1792. [Google Scholar] [CrossRef]
- Aup-Ngoen, K.; Dumrongrojthanath, P.; Thongtem, T.; Thongtem, S. Effect of medium solvents on crystalline degree and specific surface area of Cu3BiS3 nanoparticles synthesised by biomolecule-assisted hydrothermal and solvothermal methods. Int. J. Nanotechnol. 2017, 14, 22–30. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.B.; Nie, L.Y.; Chen, L.J.; Yuan, R. Spray pyrolysis deposition of Cu3BiS3 thin films. Thin Solid Film. 2015, 585, 72–75. [Google Scholar] [CrossRef]
- Zhong, J.S.; Xiang, W.D.; Cai, Q.; Liang, X.J. Synthesis, characterization and optical properties of flower-like Cu3BiS3 nanorods. Mater. Lett. 2012, 70, 63–66. [Google Scholar] [CrossRef]
- Hussain, A.; Luo, J.T.; Fan, P.; Liang, G.X.; Su, Z.H.; Ahmed, R.; Ali, N.; Wei, Q.P.; Muhammad, S.; Chaudhry, A.R.; et al. p-type Cu3BiS3 thin films for solar cell absorber layer via one stage thermal evaporation. Appl. Surf. Sci. 2020, 505, 144597. [Google Scholar] [CrossRef]
- Huang, D.W.; Li, L.T.; Wang, K.; Li, Y.; Feng, K.; Jiang, F. Wittichenite semiconductor of Cu3BiS3 films for efficient hydrogen evolution from solar driven photoelectrochemical water splitting. Nat. Commun. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Fazal, T.; Iqbal, S.; Shah, M.Z.; Mahmood, Q.; Ismail, B.; Alsaab, H.O.; Awwad, N.S.; Ibrahium, H.A.; Elkaeed, E.B. Optoelectronic, structural and morphological analysis of Cu3BiS3 sulfosalt thin films. Results Phys. 2022, 36, 105453. [Google Scholar] [CrossRef]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, P.F.M.; Torresi, R.M.; Emmerling, F.; Camargo, P.H.C. Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles. J. Mater. Chem. A 2020, 8, 16114–16141. [Google Scholar] [CrossRef]
- Do, J.L.; Friscic, T. Mechanochemistry: A Force of Synthesis. Acs Cent. Sci. 2017, 3, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Baláž, M.; Vella-Zarb, L.; Hernández, J.G.; Halasz, I.; Crawford, D.E.; Krupička, M.; André, V.; Niidu, A.; García, F.; Maini, L.; et al. Mechanochemistry: A disruptive innovation for the industry of the future. Chim. Oggi-Chem. Today 2019, 37. [Google Scholar]
- Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J.M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571–7637. [Google Scholar] [CrossRef] [Green Version]
- Dutková, E.; Sayagues, M.J.; Briančin, J.; Zorkovská, A.; Bujňáková, Z.; Kováč, J.; Kováč, J.J.; Baláž, P.; Ficeriová, J. Synthesis and characterization of CuInS2 nanocrystalline semiconductor prepared by high-energy milling. J. Mater. Sci. 2016, 51, 1978–1984. [Google Scholar] [CrossRef]
- Dutkova, E.; Bujnakova, Z.; Kovac, J.; Skorvanek, I.; Sayagues, M.J.; Zorkovska, A.; Kovac, J.; Balaz, P. Mechanochemical synthesis, structural, magnetic, optical and electrooptical properties of CuFeS2 nanoparticles. Adv. Powder Technol. 2018, 29, 1820–1826. [Google Scholar] [CrossRef]
- Dutkova, E.; Sayagues, M.J.; Fabian, M.; Kovac, J.; Kovac, J.; Balaz, M.; Stahorsky, M. Mechanochemical synthesis of ternary chalcogenide chalcostibite CuSbS2 and its characterization. J. Mater. Sci.-Mater. Electron. 2021, 32, 22898–22909. [Google Scholar] [CrossRef]
- Dutkova, E.; Sayagues, M.J.; Fabian, M.; Balaz, M.; Achimovicova, M. Mechanochemically synthesized ternary chalcogenide Cu3SbS4 powders in a laboratory and an industrial mill. Mater. Lett. 2021, 291, 129566. [Google Scholar] [CrossRef]
- Dutková, E.; Sayagués, M.J.; Fabián, M.; Baláž, M.; Kováč, J.; Kováč, J., Jr.; Stahorský, M.; Achimovičová, M.; Lukáčová Bujňáková, Z. Nanocrystalline Skinnerite (Cu3SbS3) Prepared by High-Energy Milling in a Laboratory and an Industrial Mill and Its Optical and Optoelectrical Properties. Molecules 2023, 28, 326. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C plus. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.S.O. Advanced Input Files & Parametric Quantitative Analysis Using Topas. Extending Reach. Powder Diffr. Model. User Defin. Macros 2010, 651, 1–9. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J.; Roisnel, T. Line Broadening Analysis Using FullProf*: Determination of Microstructural Properties. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch SZ, Switzerland, 2004; Volume 443, pp. 123–126. [Google Scholar]
- Santhanapriya, R.; Muthukannan, A.; Sivakumar, G.; Mohanraj, K. Solvothermal-Assisted Synthesis of Cu3XS3 (X = Bi and Sb) Chalcogenide Nanoparticles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2016, 46, 1388–1394. [Google Scholar] [CrossRef]
- Whittles, T.J.; Veal, T.D.; Savory, C.N.; Yates, P.J.; Murgatroyd, P.A.E.; Gibbon, J.T.; Birkett, M.; Potter, R.J.; Major, J.D.; Durose, K.; et al. Band Alignments, Band Gap, Core Levels, and Valence Band States in Cu3BiS3 for Photovoltaics. ACS Appl. Mater. Interfaces 2019, 11, 27033–27047. [Google Scholar] [CrossRef]
- Yakushev, M.V.; Maiello, P.; Raadik, T.; Shaw, M.J.; Edwards, P.R.; Krustok, J.; Mudryi, A.V.; Forbes, I.; Martin, R.W. Investigation of the Structural, Optical and Electrical Properties of Cu3BiS3 Semiconducting Thin Films. Adv. Mater. Charact. Tech. Sol. Cells Ii 2014, 60, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Koskela, K.M.; Tadle, A.C.; Chen, K.Y.; Brutchey, R.L. Solution Processing Cu3BiS3 Absorber Layers with a Thiol-Amine Solvent Mixture. Acs Appl. Energy Mater. 2021, 4, 11026–11031. [Google Scholar] [CrossRef]
- Balaz, P.; Balaz, M.; Achimovicova, M.; Bujinakova, Z.; Dutkova, E. Chalcogenide mechanochemistry in materials science: Insight into synthesis and applications (a review). J. Mater. Sci. 2017, 52, 11851–11890. [Google Scholar] [CrossRef]
- Deshmukh, S.G.; Panchal, A.K.; Vipul, K. Chemical Bath Deposition of Cu3BiS3 Thin Films. In Proceedings of the International Conference on Condensed Matter and Applied Physics (ICC 2015), Bikaner, India, 30–31 October 2015; Volume 1728. [Google Scholar]
- Chakraborty, M.; Thangavel, R.; Komninou, P.; Zhou, Z.Y.; Gupta, A. Nanospheres and nanoflowers of copper bismuth sulphide (Cu3BiS3): Colloidal synthesis, structural, optical and electrical characterization. J. Alloy. Compd. 2019, 776, 142–148. [Google Scholar] [CrossRef]
- Li, B.; Ye, K.C.; Zhang, Y.X.; Qin, J.B.; Zou, R.J.; Xu, K.B.; Huang, X.J.; Xiao, Z.Y.; Zhang, W.J.; Lu, X.W.; et al. Photothermal Theragnosis Synergistic Therapy Based on Bimetal Sulphide Nanocrystals Rather Than Nanocomposites. Adv. Mater. 2015, 27, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutková, E.; Baláž, M.; Sayagués, M.J.; Kováč, J.; Kováč, J., Jr. Mechanochemically Synthesized Chalcogenide Cu3BiS3 Nanocrystals in an Environmentally Friendly Manner for Solar Cell Applications. Crystals 2023, 13, 487. https://doi.org/10.3390/cryst13030487
Dutková E, Baláž M, Sayagués MJ, Kováč J, Kováč J Jr. Mechanochemically Synthesized Chalcogenide Cu3BiS3 Nanocrystals in an Environmentally Friendly Manner for Solar Cell Applications. Crystals. 2023; 13(3):487. https://doi.org/10.3390/cryst13030487
Chicago/Turabian StyleDutková, Erika, Matej Baláž, María Jesús Sayagués, Jaroslav Kováč, and Jaroslav Kováč, Jr. 2023. "Mechanochemically Synthesized Chalcogenide Cu3BiS3 Nanocrystals in an Environmentally Friendly Manner for Solar Cell Applications" Crystals 13, no. 3: 487. https://doi.org/10.3390/cryst13030487
APA StyleDutková, E., Baláž, M., Sayagués, M. J., Kováč, J., & Kováč, J., Jr. (2023). Mechanochemically Synthesized Chalcogenide Cu3BiS3 Nanocrystals in an Environmentally Friendly Manner for Solar Cell Applications. Crystals, 13(3), 487. https://doi.org/10.3390/cryst13030487