Inelastic Neutron Scattering Study of Phonon Dispersion Relation in Higher Manganese Silicides
Abstract
:1. Introduction
2. Experimental Details
2.1. Material Synthesis and Characterization
2.2. TEM
2.3. Neutron Scattering
3. Results
3.1. Structure Determination, Crystal Quality, and Thermal Transport
3.2. TEM
3.3. Inelastic Neutron Scattering
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flieher, G.; Vollenkle, H.; Nowotny, H. Die Kristallstruktur von Mn15Si26. Monatsh. Chem. 1967, 98, 2173. [Google Scholar] [CrossRef]
- Knott, H.W.; Mueller, M.H.; Heaton, L. The crystal structure of Mn15Si26. Acta Cryst. 1967, 23, 549. [Google Scholar] [CrossRef]
- Slack, G.A. New materials and performance limits for thermoelectric cooling. In CRC Handbook of Thermoelectrics; Rowe, D.M., Ed.; CRC Press: Boca Raton, FL, USA, 1995; Chapter 34. [Google Scholar]
- Liu, W.; Yin, K.; Zhang, Q.; Uher, C.; Tang, X. Eco-friendly high-performance silicide thermoelectric materials. Natl. Sci. Rev. 2017, 4, 611–626. [Google Scholar] [CrossRef]
- Liu, W.D.; Chen, Z.G.; Zou, J. Eco-Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges. Adv. Energy Mater. 2018, 8, 1800056. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 106. [Google Scholar] [CrossRef]
- Tritt, T.M. Thermoelectric Phenomena, Materials, and Applications. Annu. Rev. Mater. Res. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Toberer, E.S.; Baranowski, L.L.; Dames, C. Advances in thermal conductivity. Annu. Rev. Mater. Res. 2012, 42, 179. [Google Scholar] [CrossRef]
- Gaultois, M.W.; Sparks, T.D.; Borg, C.K.H.; Seshadri, R.; Bonificio, W.D.; Clarke, D. R Data-driven review of thermoelectric materials: Performance and resource considerations. Chem. Mater. 2013, 25, 2911. [Google Scholar] [CrossRef]
- Zhu, T.; Liu, Y.; Fu, C.; Heremans, J.P.; Snyder, J.G.; Zhao, X. Compromise and Synergy in High-Efficiency Thermoelectric Materials. Adv. Mater. 2017, 29, 1605884. [Google Scholar] [CrossRef]
- Wei, J.; Yang, L.; Ma, Z.; Song, P.; Zhang, M.; Ma, J.; Yang, F.; Wang, X. Review of current high-ZT thermoelectric materials. J. Mater. Sci. 2020, 55, 12642–12704. [Google Scholar] [CrossRef]
- Shi, X.L.; Zou, J.; Chen, Z.G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef] [PubMed]
- Girard, S.N.; Chen, X.; Meng, F.; Pokhrel, A.; Zhou, J.; Shi, L.; Jin, S. Thermoelectric properties of undoped high purity higher manganese silicides grown by chemical vapor transport. Chem. Mater. 2014, 26, 5097. [Google Scholar] [CrossRef]
- Itoh, T.; Yamada, M. Synthesis of thermoelectric manganese silicide by mechanical alloying and pulse discharge sintering. J. Electron. Mater. 2009, 38, 925. [Google Scholar] [CrossRef]
- Zhou, A.J.; Zhu, T.J.; Zhao, X.B.; Yang, S.H.; Dasgupta, T.; Stiewe, C.; Hassdorf, R.; Mueller, E. Improved Thermoelectric Performance of Higher Manganese Silicides with Ge Additions. J. Electron. Mater. 2010, 39, 2002. [Google Scholar] [CrossRef]
- Chen, X.; Girard, S.N.; Meng, F.; Lara-Cuzio, E.; Jin, S.; Goodenough, J.B.; Zhou, J.; Shi, L. Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides. Adv. Energy Mater. 2014, 4, 1400452. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Goodenough, J.B.; Shi, L. Enhanced thermoelectric power factor of Re-substituted higher manganese silicides with small islands of MnSi secondary phase. J. Mater. Chem. C 2015, 3, 10500–10508. [Google Scholar] [CrossRef]
- Lee, H.; Kim, G.; Lee, B.; Lee, K.H.; Lee, W. Phase Formation and Thermoelectric Properties of Doped Higher Manganese Silicides (Mn15Si26). J. Electron. Mater. 2017, 46, 3242–3248. [Google Scholar] [CrossRef]
- Muthiah, S.; Singh, R.C.; Pathak, B.D.; Kumar Avasthi, P.; Kumar, R.; Kumar, A.; Srivastava, A.K.; Dhar, A. Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique. Nanoscale 2018, 10, 1970–1977. [Google Scholar] [CrossRef]
- Fedorov, M.I.; Isachenko, G.N. Silicides: Materials for thermoelectric energy conversion. Jpn. J. Appl. Phys. 2015, 54, 07JA05. [Google Scholar] [CrossRef]
- Zaitsev, V.K. Thermoelectric properties of anisotropic MnSi1.75. In CRC Handbook of Thermoelectrics; Rowe, D.M., Ed.; CRC Press: Boca Raton, FL, USA, 1995; Chapter 25. [Google Scholar]
- Chen, X.; Weathers, A.; Carrete, J.; Mukhopadyay, S.; Delaire, O.; Stewart, D.A.; Mingo, N.; Girard, S.N.; Ma, J.; Abernathy, D.L.; et al. Twisting phonons in complex crystals with quasi-one-dimensional substructures. Nat. Commun. 2015, 6, 6723. [Google Scholar] [CrossRef]
- Chauhan, N.S.; Ono, I.; Hayashi, K.; Miyazaki, Y. Anisotropic correlations in higher manganese silicides. J. Alloys Compd. 2023, 935, 167983. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Ye, H.; Amelinckx, S. High-resolution electron microscopic study of manganese silicides MnSi. J. Solid State Chem. 1986, 61, 8–39. [Google Scholar] [CrossRef]
- Shirane, G.; Shapiro, S.M.; Tranquada, J.M. Neutron Scattering with a Triple-Axis Spectrometer, 1st ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics, 1st ed.; Brooks Cole: Pacific Grove, CA, USA, 1976. [Google Scholar]
- Higgins, J.M.; Schmitt, A.L.; Guzei, I.A.; Jin, S. Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder Phase. J. Am. Chem. Soc. 2008, 130, 16086–16094. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Li, H.; Yan, Y.; Lin, Z.; Tang, X.; Zhang, Q.; Uher, C. Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi. Intermetallics 2011, 19, 404–408. [Google Scholar] [CrossRef]
- Chen, X.; Shi, L.; Zhou, J.; Goodenough, J.B. Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides. J. Alloys Compd. 2015, 641, 30–36. [Google Scholar] [CrossRef]
- Liu, L.; Oda, H.; Onda, T.; Yodoshi, N.; Wada, T.; Chen, Z.C. Microstructure and thermoelectric properties of higher manganese silicides fabricated via gas atomization and spark plasma sintering. Mater. Chem. Phys. 2020, 249, 122990. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belanger, R.; Clancy, J.P.; Jain, S.; Yamani, Z.; Tseng, Y.-C.; Kim, Y.-J. Inelastic Neutron Scattering Study of Phonon Dispersion Relation in Higher Manganese Silicides. Crystals 2023, 13, 741. https://doi.org/10.3390/cryst13050741
Belanger R, Clancy JP, Jain S, Yamani Z, Tseng Y-C, Kim Y-J. Inelastic Neutron Scattering Study of Phonon Dispersion Relation in Higher Manganese Silicides. Crystals. 2023; 13(5):741. https://doi.org/10.3390/cryst13050741
Chicago/Turabian StyleBelanger, Randy, James Patrick Clancy, Sheetal Jain, Zahra Yamani, Yu-Chih Tseng, and Young-June Kim. 2023. "Inelastic Neutron Scattering Study of Phonon Dispersion Relation in Higher Manganese Silicides" Crystals 13, no. 5: 741. https://doi.org/10.3390/cryst13050741