Magnetic Force Microscopy of Multiferroic Bulk Ceramic Oxides
Abstract
1. Introduction
2. Polishing and Cleaning of Multiferroic Ceramic Specimens Prior to MFM Analysis
3. MFM Studies of Magnetic Domains in Multiferroic Bulk-Ceramic Samples
4. Magnetic-Force Microscopy Measurements under an Applied External Magnetic Field
5. Conclusions and Outlook
6. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vopson, M.M. The multicaloric effect in multiferroic materials. Solid State Commun. 2012, 152, 2067–2070. [Google Scholar] [CrossRef]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Cheng, Z.; Zhao, H.; Kimura, H. Domain switching in single-phase multiferroics. Appl. Phys. Rev. 2018, 5, 021102. [Google Scholar] [CrossRef]
- Ramesh, R.; Manipatruni, S. Electric field control of magnetism. Proc. R. Soc. A 2021, 477, 20200942. [Google Scholar] [CrossRef]
- Evans, D.M.; Garcia, V.; Meier, D.; Bibes, M. Domains and domain walls in multiferroics. Phys. Sci. Rev. 2020, 5, 20190067. [Google Scholar] [CrossRef]
- Vopson, M.M. Fundamentals of Multiferroic Materials and Their Possible Applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef]
- Kazakova, O.; Puttock, R.; Barton, C.; Corte-León, H.; Jaafar, M.; Neu, V.; Asenjo, A. Frontiers of magnetic force microscopy. J. Appl. Phys. 2019, 125, 060901. [Google Scholar] [CrossRef]
- Martin, Y.; Wickramasinghe, H.K. Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl. Phys. Lett. 1998, 50, 1455. [Google Scholar] [CrossRef]
- Sáenz, J.J.; García, N.; Grütter, P.; Meyer, E.; Heinzelmann, H.; Wiesendanger, R.; Rosenthaler, L.; Hidber, H.R.; Güntherodt, H.-J. Observation of magnetic forces by the atomic force microscope. J. Appl. Phys. 1987, 62, 4293–4295. [Google Scholar] [CrossRef]
- Sugawara, Y. Atomic Force Microscopy. In Roadmap of Scanning Probe Microscopy; Seizo Morita, Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 15–21. ISBN 978-3-540-34315-8. [Google Scholar]
- Uršič, H.; Prah, U. Investigations of ferroelectric polycrystalline bulks and thick films using piezoresponse force microscopy. Proc. R. Soc. A 2019, 475, 20180782. [Google Scholar] [CrossRef] [PubMed]
- Passeri, D.; Angeloni, L.; Reggente, M.; Rossi, M. Magnetic Force Microscopy. In Magnetic Characterization Techniques for Nanomaterials; Kumar Challa, S.S.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 209–259. ISBN 9783662527801. [Google Scholar]
- Scheunert, G.; Cohen, S.R.; Kullock, R.; McCarron, R.; Rechev, K.; Kaplan-Ashiri, I.; Bitton, O.; Dawson, P.; Hecht, B.; Oron, D. Grazing-incidence optical magnetic recording with super-resolution. Beilstein J. Nanotechnol. 2017, 8, 28–37. [Google Scholar] [CrossRef]
- Angeloni, L.; Passeri, D.; Reggente, M.; Mantovani, D.; Rossi, M. Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: Application to superparamagnetic nanoparticles. Sci. Rep. 2016, 6, 26293. [Google Scholar] [CrossRef]
- Gupta, S.; Pal, M.; Tomar, M.; Guo, R.; Bhalla, A.; Gupta, V. Ferroelectric and magnetic domain mapping of magneto-dielectric Ce doped BiFeO3 thin films. J. Alloys Compd. 2021, 882, 160698. [Google Scholar] [CrossRef]
- Jia, T.; Kimura, H.; Cheng, Z.; Zhao, H. Switching of both local ferroelectric and magnetic domains in multiferroic Bi0.9La0.1FeO3 thin film by mechanical force. Sci. Rep. 2016, 6, 31867. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Kawabe, R.; Hojo, H.; Shimizu, H.; Yamamoto, H.; Katsumata, M.; Shigematsu, K.; Mibu, K.; Kumagai, Y.; Oba, F.; et al. Direct Observation of Magnetization Reversal by Electric Field at Room Temperature in Co-Substituted Bismuth Ferrite Thin Film. Nano Lett. 2019, 19, 1767–1773. [Google Scholar] [CrossRef]
- Gao, M.; Viswan, R.; Tang, X.; Leung, C.M.; Li, J.; Viehland, D. Magnetoelectricity of CoFe2O4 and tetragonal phase BiFeO3 nanocomposites prepared by pulsed laser deposition. Sci. Rep. 2018, 8, 323. [Google Scholar] [CrossRef]
- You, L.; Wang, B.; Zou, X.; Lim, Z.S.; Zhou, Y.; Ding, H.; Chen, L.; Wang, J. Origin of the uniaxial magnetic anisotropy in La0.7Sr 0.3MnO3 on stripe-domain BiFeO3. Phys. Rev. B 2013, 88, 184426. [Google Scholar] [CrossRef]
- Walker, J.; Mirjanic, A.; Prah, U.; Sadl, M.; Condurache, O.A.; Bencan, A.; Rojac, T.; Grigoras, M.; Ursic, H. Magnetic contributions in multiferroic gadolinium modified bismuth ferrite ceramics. Scr. Mater. 2020, 188, 233–237. [Google Scholar] [CrossRef]
- Shvartsman, V.V.; Alawneh, F.; Borisov, P.; Kozodaev, D.; Lupascu, D.C. Converse magnetoelectric effect in CoFe2O4–BaTiO3 composites with a core–shell structure. Smart Mater. Struct. 2011, 20, 075006. [Google Scholar] [CrossRef]
- Etier, M.; Shvartsman, V.V.; Gao, Y.; Landers, J.; Wende, H.; Lupascu, D.C. Magnetoelectric Effect in (0–3) CoFe2O4–BaTiO3(20/80) Composite Ceramics Prepared by the Organosol Route. Ferroelectrics 2013, 448, 77–85. [Google Scholar] [CrossRef]
- Jalli, J.; Hong, Y.K.; Abo, G.S.; Bae, S.; Lee, J.J.; Park, J.H.; Choi, B.C.; Kim, S.G. MFM studies of magnetic domain patterns in bulk barium ferrite (BaFe12O19) single crystals. J. Magn. Magn. Mater. 2011, 323, 2627–2631. [Google Scholar] [CrossRef]
- Geng, Y.; Lee, N.; Choi, Y.J.; Cheong, S.-W.; Wu, W. Collective Magnetism at Multiferroic Vortex Domain Walls. Nano Lett. 2012, 12, 6055–6059. [Google Scholar] [CrossRef]
- Sharma, Y.; Agarwal, R.; Collins, L.; Zheng, Q.; Ievlev, A.V.; Hermann, R.P.; Cooper, V.R.; KC, S.; Ivanov, I.N.; Katiyar, R.S.; et al. Self-Assembled Room Temperature Multiferroic BiFeO3–LiFe5O8 Nanocomposites. Adv. Funct. Mater. 2020, 30, 1906849. [Google Scholar] [CrossRef]
- Wang, C.; Yang, L.; Li, Z.; Zeng, M.; Zhang, A.; Qin, M.; Lu, X.; Gao, X.; Gao, J.; Lam, K.H. Giant room temperature multiferroicity and domain structures in hot-press sintered Bi0.85Sm0.15Fe0.97Sc0.03O3 ceramics. Ceram. Int. 2017, 43, 12764–12769. [Google Scholar] [CrossRef]
- Chen, J.; Xu, B.; Liu, X.Q.; Gao, T.T.; Bellaiche, L.; Chen, X.M. Symmetry Modulation and Enhanced Multiferroic Characteristics in Bi1−xNdxFeO3 Ceramics. Adv. Funct. Mater. 2019, 29, 1806399. [Google Scholar] [CrossRef]
- Henrichs, L.F.; Cespedes, O.; Bennett, J.; Landers, J.; Salamon, S.; Heuser, C.; Hansen, T.; Helbig, T.; Gutfleisch, O.; Lupascu, D.C.; et al. Multiferroic Clusters: A New Perspective for Relaxor-Type Room-Temperature Multiferroics. Adv. Funct. Mater. 2016, 26, 2111–2121. [Google Scholar] [CrossRef]
- Keeney, L.; Maity, T.; Schmidt, M.; Amann, A.; Deepak, N.; Petkov, N.; Roy, S.; Pemble, M.E.; Whatmore, R.W. Magnetic Field-Induced Ferroelectric Switching in Multiferroic Aurivillius Phase Thin Films at Room Temperature. J. Am. Ceram. Soc. 2013, 96, 2339–2357. [Google Scholar] [CrossRef]
- Faraz, A.; Maity, T.; Schmidt, M.; Deepak, N.; Roy, S.; Pemble, M.E.; Whatmore, R.W.; Keeney, L. Direct visualization of magnetic-field-induced magnetoelectric switching in multiferroic aurivillius phase thin films. J. Am. Ceram. Soc. 2017, 100, 975–987. [Google Scholar] [CrossRef]
- Li, L.; Lu, L.; Zhang, D.; Su, R.; Yang, G.; Zhai, J.; Yang, Y. Direct Observation of Magnetic Field Induced Ferroelectric Domain Evolution in Self-Assembled Quasi (0–3) BiFeO3–CoFe2O4 Thin Films. ACS Appl. Mater. Interfaces 2016, 8, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Wu, W. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field. Rev. Sci. Instrum. 2014, 85, 053901. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Das, H.; Wysocki, A.L.; Wang, X.; Cheong, S.-W.; Mostovoy, M.; Fennie, C.J.; Wu, W. Direct visualization of magnetoelectric domains. Nat. Mater. 2014, 13, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Prashanthi, K.; Shaibani, P.M.; Sohrabi, A.; Natarajan, T.S.; Thundat, T. Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys. Status Solidi Rapid Res. Lett. 2012, 6, 244–246. [Google Scholar] [CrossRef]
- Prashanthi, K.; Thundat, T. In situ study of electric field-induced magnetization in multiferroic BiFeO3 nanowires. Scanning 2014, 36, 224–230. [Google Scholar] [CrossRef]
- Zavaliche, F.; Zheng, H.; Mohaddes-Ardabili, L.; Yang, S.Y.; Zhan, Q.; Shafer, P.; Reilly, E.; Chopdekar, R.; Jia, Y.; Wright, P.; et al. Electric Field-Induced Magnetization Switching in Epitaxial Columnar Nanostructures. Nano Lett. 2005, 5, 1793–1796. [Google Scholar] [CrossRef]
- Liu, C.; Ma, J.; Ma, J.; Zhang, Y.; Chen, J.; Nan, C.-W. Cautions to predicate multiferroic by atomic force microscopy. AIP Adv. 2017, 7, 055003. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Sylum Reasearch, “Variable Magnetic Field Module”. 2021. Available online: https://afm.oxinst.com/products/mfp-3d-other-driving-forces-acccessories/variable-magnetic-field-module (accessed on 27 March 2023).
- Walker, J.; Ursic, H.; Bencan, A.; Malic, B.; Simons, H.; Reaney, I.; Viola, G.; Nagarajan, V.; Rojac, T. Temperature dependent piezoelectric response and strain-electric-field hysteresis of rare-earth modified bismuth ferrite ceramics. J. Mater. Chem. C 2016, 4, 7859–7868. [Google Scholar] [CrossRef]
- Tryhuk, V.V.; Ravinski, A.F.; Makoed, I.I.; Lazenka, V.V.; Januszkiewicz, K.I. Magnetoelectric Coupling and Lattice Dynamics of Gd-Doped BiFeO3 Multiferroics. In Proceedings of the IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE), Lviv, Ukraine, 3–7 September 2012; pp. 253–254. [Google Scholar]
- Pattanayak, S.; Choudhary, R.N.P.; Shannigrahi, S.R.; Das, P.R.; Padhee, R. Ferroelectric and ferromagnetic properties of Gd-modified BiFeO3. J. Magn. Magn. Mater. 2013, 341, 158–164. [Google Scholar] [CrossRef]
- Ursic, H.; Sadl, M. Investigation of piezoelectric 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 films in cross section using piezo-response force microscopy. Appl. Phys. Lett. 2022, 121, 192905. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uršič, H.; Šadl, M.; Prah, U.; Fišinger, V. Magnetic Force Microscopy of Multiferroic Bulk Ceramic Oxides. Crystals 2023, 13, 838. https://doi.org/10.3390/cryst13050838
Uršič H, Šadl M, Prah U, Fišinger V. Magnetic Force Microscopy of Multiferroic Bulk Ceramic Oxides. Crystals. 2023; 13(5):838. https://doi.org/10.3390/cryst13050838
Chicago/Turabian StyleUršič, Hana, Matej Šadl, Uroš Prah, and Val Fišinger. 2023. "Magnetic Force Microscopy of Multiferroic Bulk Ceramic Oxides" Crystals 13, no. 5: 838. https://doi.org/10.3390/cryst13050838
APA StyleUršič, H., Šadl, M., Prah, U., & Fišinger, V. (2023). Magnetic Force Microscopy of Multiferroic Bulk Ceramic Oxides. Crystals, 13(5), 838. https://doi.org/10.3390/cryst13050838