Advances in the Field of Graphene-Based Composites for Energy–Storage Applications
Abstract
:1. Introduction
2. The Properties and Preparation Methods of Graphene
2.1. Properties of Graphe
2.2. Mechanism of Energy–Storage and Degradation for Graphene
2.3. Preparation Methods of Graphene
3. Graphene-Based Energy–Storage Systems
3.1. Graphene-Based LIBs
3.1.1. Mechanisms of Graphene-Based LIBs
3.1.2. Graphene-Based Anodes
3.1.3. Graphene-Based Cathodes
3.2. Graphene-Based SIBs
3.3. Graphene-Based Supercapacitors
3.4. Graphene-Based Composites for EES beyond LIBs, SIBs and Supercapacitors
3.4.1. Potassium-Ion Batteries
3.4.2. Aluminum-Ion Batteries
4. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.-E.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, Q.; Niu, Z.; Chen, J. Graphene-based materials for flexible energy storage devices. J. Energy Chem. 2018, 27, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Samorì, P.; Kinloch, I.; Feng, X.; Palermo, V. Graphene-based nanocomposites for structural and functional applications: Using 2-dimensional materials in a 3-dimensional world. 2D Mater. 2015, 2, 030205. [Google Scholar] [CrossRef]
- Yang, T.; Xia, J.; Piao, Z.; Yang, L.; Zhang, S.; Xing, Y.; Zhou, G. Graphene-based materials for flexible lithium–sulfur batteries. ACS Nano 2021, 15, 13901–13923. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, X.; Liu, B.; Deng, S.; Xie, D.; Liu, Q.; Wang, Y.; Wu, J.; Wang, X.; Tu, J. Multiscale graphene-based materials for applications in sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803342. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, L.; Ciesielski, A.; Samorì, P. 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 2016, 6, 1600671. [Google Scholar] [CrossRef] [Green Version]
- Rabiei Baboukani, A.; Khakpour, I.; Drozd, V.; Wang, C. Liquid-Based Exfoliation of Black Phosphorus into Phosphorene and Its Application for Energy Storage Devices. Small Struct. 2021, 2, 2000148. [Google Scholar] [CrossRef]
- Jain, R.; Narayan, R.; Sasikala, S.P.; Lee, K.E.; Jung, H.J.; Kim, S.O. Phosphorene for energy and catalytic application—Filling the gap between graphene and 2D metal chalcogenides. 2D Mater. 2017, 4, 042006. [Google Scholar] [CrossRef]
- Pang, J.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R.G.; Gemming, T.; Liu, Z.; Rummeli, M.H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 2018, 8, 1702093. [Google Scholar] [CrossRef]
- Garcia-Dali, S.; Paredes, J.I.; Munuera, J.M.; Villar-Rodil, S.; Adawy, A.; Martinez-Alonso, A.; Tascón, J.M. Aqueous cathodic exfoliation strategy toward solution-processable and phase-preserved MoS2 nanosheets for energy storage and catalytic applications. ACS Appl. Mater. Interfaces 2019, 11, 36991–37003. [Google Scholar] [CrossRef]
- Muska, M.; Yang, J.; Sun, Y.; Wang, J.; Wang, Y.; Yang, Q. CoSe2 nanoparticles dispersed in WSe2 nanosheets for efficient electrocatalysis and supercapacitance applications. ACS Appl. Nano Mater. 2021, 4, 5796–5807. [Google Scholar] [CrossRef]
- Han, D.; Hwang, S.; Bak, S.-M.; Nam, K.-W. Controlling MoO2 and MoO3 phases in MoOx/CNTs nanocomposites and their application to anode materials for lithium-ion batteries and capacitors. Electrochim. Acta 2021, 388, 138635. [Google Scholar] [CrossRef]
- Bokhari, S.W.; Siddique, A.H.; Sherrell, P.C.; Yue, X.; Karumbaiah, K.M.; Wei, S.; Ellis, A.V.; Gao, W. Advances in graphene-based supercapacitor electrodes. Energy Rep. 2020, 6, 2768–2784. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K. A review on the current research on microwave processing techniques applied to graphene-based supercapacitor electrodes: An emerging approach beyond conventional heating. J. Energy Chem. 2022, 74, 252–282. [Google Scholar] [CrossRef]
- Li, Z.; Cai, W.; Liu, J.; Zhou, M.; Cheng, L.; Yu, H.; Song, L.; Gui, Z.; Hu, Y. One-pot exfoliation and synthesis of hydroxyapatite-functionalized graphene as multifunctional nanomaterials based on electrochemical approach. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106583. [Google Scholar] [CrossRef]
- Huang, Z.; Luo, P.; Zheng, H.; Lyu, Z. Sulfur-doped graphene promoted Li4Ti5O12@C nanocrystals for lithium-ion batteries. J. Alloys Compd. 2022, 908, 164599. [Google Scholar] [CrossRef]
- Mo, R.; Tan, X.; Li, F.; Tao, R.; Xu, J.; Kong, D.; Wang, Z.; Xu, B.; Wang, X.; Wang, C.; et al. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities. Nat. Commun. 2020, 11, 1374. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Yan, C.; Zhao, H.; Lei, Y. Recent Advances in 2D Heterostructures as Advanced Electrode Materials for Potassium-Ion Batteries. Small Struct. 2022, 3, 2100221. [Google Scholar] [CrossRef]
- Zhu, J.; Tu, W.; Pan, H.; Zhang, H.; Liu, B.; Cheng, Y.; Deng, Z.; Zhang, H. Self-Templating Synthesis of Hollow Co(3)O(4) Nanoparticles Embedded in N,S-Dual-Doped Reduced Graphene Oxide for Lithium Ion Batteries. ACS Nano 2020, 14, 5780–5787. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, Z.; Wang, P.; Jensen, L.R.; Zhang, Y.; Yue, Y. Optimized assembling of MOF/SnO2/Graphene leads to superior anode for lithium ion batteries. Nano Energy 2020, 74, 104868. [Google Scholar] [CrossRef]
- Ren, Y.; Xiang, L.; Yin, X.; Xiao, R.; Zuo, P.; Gao, Y.; Yin, G.; Du, C. Ultrathin Si Nanosheets Dispersed in Graphene Matrix Enable Stable Interface and High Rate Capability of Anode for Lithium-ion Batteries. Adv. Funct. Mater. 2022, 32, 2110046. [Google Scholar] [CrossRef]
- Jing, P.; Liu, K.; Soule, L.; Wang, J.; Li, T.; Zhao, B.; Liu, M. Engineering the architecture and oxygen deficiency of T-Nb2O5-carbon-graphene composite for high-rate lithium-ion batteries. Nano Energy 2021, 89, 106398. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Zheng, S.; Xu, K.; Wu, J.; Chen, S.; Liang, J.; Shi, A.; Wang, Z. A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery. Energy Storage Mater. 2021, 39, 1–10. [Google Scholar] [CrossRef]
- Xue, H.; Wu, Y.; Zou, Y.; Shen, Y.; Liu, G.; Li, Q.; Yin, D.; Wang, L.; Ming, J. Unraveling Metal Oxide Role in Exfoliating Graphite: New Strategy to Construct High-Performance Graphene-Modified SiOx-Based Anode for Lithium-Ion Batteries. Adv. Funct. Mater. 2020, 30, 1910657. [Google Scholar] [CrossRef]
- Wang, C.; Wang, M.; He, Z.; Liu, L.; Huang, Y. Rechargeable aqueous zinc–manganese dioxide/Graphene batteries with high rate capability and large capacity. ACS Appl. Energy Mater. 2020, 3, 1742–1748. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, Y.; Xiao, X.; Wu, S.; Zhong, G.; Xu, K.; Wei, Z.; Su, W.; Lu, X. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J. Energy Chem. 2020, 43, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Yang, Y.; Cao, S.; Xiang, R.; Zhang, L.; Yu, J. Pore Perforation of Graphene Coupled with In Situ Growth of Co3Se4 for High-Performance Na-Ion Battery. Adv. Mater. 2023, 35, 2207752. [Google Scholar] [CrossRef]
- Dai, C.; Sun, G.; Hu, L.; Xiao, Y.; Zhang, Z.; Qu, L. Recent progress in graphene-based electrodes for flexible batteries. InfoMat 2020, 2, 509–526. [Google Scholar] [CrossRef] [Green Version]
- Lv, W.; Li, Z.; Deng, Y.; Yang, Q.-H.; Kang, F. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Mater. 2016, 2, 107–138. [Google Scholar] [CrossRef]
- Khan, B.M.; Oh, W.C.; Nuengmatch, P.; Ullah, K. Role of graphene-based nanocomposites as anode material for Lithium-ion batteries. Mater. Sci. Eng. B 2023, 287, 116141. [Google Scholar] [CrossRef]
- Ullah, K.; Shah, N.; Wadood, R.; Khan, B.M.; Oh, W.C. Recent trends in graphene based transition metal oxides as anode materials for rechargeable lithium-ion batteries. Nano Trends 2023, 1, 100004. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Sci. Adv. 2015, 347, 1246501. [Google Scholar] [CrossRef]
- Rajoba, S.J.; Jadhav, L.D.; Kalubarme, R.S.; Patil, P.S.; Varma, S.; Wani, B. Electrochemical performance of LiFePO4/GO composite for Li-ion batteries. Ceram. Int. 2018, 44, 6886–6893. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation diagnostics for lithium ion cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Ando, K.; Matsuda, T.; Imamura, D. Degradation diagnosis of lithium-ion batteries with a LiNi0. 5Co0. 2Mn0. 3O2 and LiMn2O4 blended cathode using dV/dQ curve analysis. J. Power Sources 2018, 390, 278–285. [Google Scholar] [CrossRef]
- Li, A.G.; West, A.C.; Preindl, M. Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review. Appl. Energy 2022, 316, 119030. [Google Scholar] [CrossRef]
- Xiong, R.; Pan, Y.; Shen, W.; Li, H.; Sun, F. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110048. [Google Scholar] [CrossRef]
- Ambrosi, A.; Pumera, M. Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 2018, 47, 7213–7224. [Google Scholar] [CrossRef]
- Tao, P.; Yao, S.; Liu, F.; Wang, B.; Huang, F.; Wang, M. Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. J. Mater. Chem. A 2019, 7, 23512–23536. [Google Scholar] [CrossRef]
- Xu, Y.; Cao, H.; Xue, Y.; Li, B.; Cai, W. Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges. Nanomaterials 2018, 8, 942. [Google Scholar] [CrossRef] [Green Version]
- Duong, D.L.; Yun, S.J.; Lee, Y.H. van der Waals layered materials: Opportunities and challenges. ACS Nano 2017, 11, 11803–11830. [Google Scholar] [CrossRef] [PubMed]
- Kamisan, A.I.; Kudin, T.I.T.; Omar, A.F.C.; Taib, M.F.M.; Hassan, O.H.; Ali, A.M.M.; Yahya, M.Z.A. Recent advances on graphene-based materials as cathode materials in lithium-sulfur batteries. Int. J. Hydrogen Energy 2022, 47, 8630–8657. [Google Scholar] [CrossRef]
- Wu, S.; Xu, R.; Lu, M.; Ge, R.; Iocozzia, J.; Han, C.; Jiang, B.; Lin, Z. Graphene-containing nanomaterials for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1500400. [Google Scholar] [CrossRef]
- Lee, S.J.; Theerthagiri, J.; Nithyadharseni, P.; Arunachalam, P.; Balaji, D.; Kumar, A.M.; Madhavan, J.; Mittal, V.; Choi, M.Y. Heteroatom-doped graphene-based materials for sustainable energy applications: A review. Renew. Sustain. Energy Rev. 2021, 143, 110849. [Google Scholar] [CrossRef]
- Ma, Y.; Han, J.; Wang, M.; Chen, X.; Jia, S. Electrophoretic deposition of graphene-based materials: A review of materials and their applications. J. Mater. 2018, 4, 108–120. [Google Scholar] [CrossRef]
- Li, G.; Huang, B.; Pan, Z.; Su, X.; Shao, Z.; An, L. Advances in three-dimensional graphene-based materials: Configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy Environ. Sci. 2019, 12, 2030–2053. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, F.; Wang, G.G.; Zhang, T.; Wang, P. Recent development of graphene-based materials for cathode application in lithium batteries: A review and outlook. Int. J. Electrochem. Sci. 2019, 14, 5961–5971. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Tran, D.T.; Doan, T.L.L.; Kim, D.H.; Kim, N.H.; Lee, J.H. Rational design of core@ shell structured CoSx@ Cu2MoS4 hybridized MoS2/N, S-codoped graphene as advanced electrocatalyst for water splitting and Zn-air battery. Adv. Energy Mater. 2020, 10, 1903289. [Google Scholar] [CrossRef]
- Lai, C.; Gong, M.; Zhou, Y.; Fang, J.; Huang, L.; Deng, Z.; Liu, X.; Zhao, T.; Lin, R.; Wang, K. Sulphur modulated Ni3FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn-air battery performance. Appl. Catal. B Environ. 2020, 274, 119086. [Google Scholar] [CrossRef]
- Lim, J.; Jung, J.-W.; Kim, N.-Y.; Lee, G.Y.; Lee, H.J.; Lee, Y.; Choi, D.S.; Yoon, K.R.; Kim, Y.-H.; Kim, I.-D. N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery. Energy Storage Mater. 2020, 32, 517–524. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, N.; He, R.; Peng, L.; Cai, D.; Qiao, J. Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn-air battery. Appl. Catal. B Environ. 2021, 285, 119811. [Google Scholar] [CrossRef]
- Shao, G.; Hanaor, D.A.; Wang, J.; Kober, D.; Li, S.; Wang, X.; Shen, X.; Bekheet, M.F.; Gurlo, A. Polymer-derived SiOC integrated with a graphene aerogel as a highly stable Li-ion battery anode. ACS Appl. Mater. Interfaces 2020, 12, 46045–46056. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, R.; Wu, Y.; Cao, J.; Chen, J.; Hou, Y.; Guo, Y.; Khatoon, R.; Chen, L.; Zhang, Q. Interface coupling 2D/2D SnSe2/graphene heterostructure as long-cycle anode for all-climate lithium-ion battery. Chem. Eng. J. 2021, 407, 126973. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, X.; Chen, J.; Wang, X.; Wang, D.; Mao, Z. PVP-assisted synthesis of g–C3N4–derived N-doped graphene with tunable interplanar spacing as high-performance lithium/sodium ions battery anodes. Carbon 2021, 174, 98–109. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Y.; He, P.; Zhang, Z.; Chen, T. Edge-rich vertical graphene nanosheets templating V2O5 for highly durable zinc ion battery. Carbon 2021, 172, 207–213. [Google Scholar] [CrossRef]
- Xiang, B.; An, W.-L.; Fu, J.-J.; Mei, S.-X.; Guo, S.-G.; Zhang, X.-M.; Gao, B.; Chu, P.K. Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode. Rare Met. 2021, 40, 383–392. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Zhao, X.; Shen, Q.; Zhao, W.; Tan, Q.; Zhang, N.; Li, P.; Jiao, L.; Qu, X. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2007480. [Google Scholar] [CrossRef]
- Ma, J.; Kong, Y.; Liu, S.; Li, Y.; Jiang, J.; Zhou, Q.; Huang, Y.; Han, S. Flexible Phosphorus-Doped Graphene/Metal–Organic Framework-Derived Porous Fe2O3 Anode for Lithium-Ion Battery. ACS Appl. Energy Mater. 2020, 3, 11900–11906. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Y.-J.; Gu, H.; Fan, H.; Yang, G.; Ignaszak, A.; Tang, X.; Liu, D.; Zhang, J. Interfacial coupled design of epitaxial Graphene@SiC Schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy 2020, 77, 105092. [Google Scholar] [CrossRef]
- Ma, Y.; Qu, H.; Wang, W.; Yu, Y.; Zhang, X.; Li, B.; Wang, L. Si/SiO2@Graphene Superstructures for High-Performance Lithium-Ion Batteries. Adv. Funct. Mater. 2022, 33, 2211648. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, J.; Li, X.; Xia, Z.; Zhang, Q.; Zhou, M.; Tian, W.; Wang, M.; Hu, H.; Li, Z.; et al. Graphene oxide-induced synthesis of button-shaped amorphous Fe2O3/rGO/CNFs films as flexible anode for high-performance lithium-ion batteries. Chem. Eng. J. 2019, 369, 215–222. [Google Scholar] [CrossRef]
- Chen, H.; Ma, X.; Shen, P.K. NiCo2S4 nanocores in-situ encapsulated in graphene sheets as anode materials for lithium-ion batteries. Chem. Eng. J. 2019, 364, 167–176. [Google Scholar] [CrossRef]
- Dong, X.; Zheng, X.; Deng, Y.; Wang, L.; Hong, H.; Ju, Z. SiO2/N-doped graphene aerogel composite anode for lithium-ion batteries. J. Mater. Sci. 2020, 55, 13023–13035. [Google Scholar] [CrossRef]
- Liu, J.; Khanam, Z.; Ahmed, S.; Wang, T.; Wang, H.; Song, S. Flexible Antifreeze Zn-Ion Hybrid Supercapacitor Based on Gel Electrolyte with Graphene Electrodes. ACS Appl. Mater. Interfaces 2021, 13, 16454–16468. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Lin, S.; Lu, X.; Hong, R.; Liu, H. Poly-dopamine carbon-coated stable silicon/graphene/CNT composite as anode for lithium ion batteries. Electrochim. Acta 2022, 404, 139708. [Google Scholar] [CrossRef]
- Rosaiah, P.; Niyitanga, T.; Sambasivam, S.; Kim, H. Graphene based magnetite carbon nanofiber composites as anodes for high-performance Li-ion batteries. New J. Chem. 2023, 47, 482–490. [Google Scholar] [CrossRef]
- Mu, Y.; Han, M.; Li, J.; Liang, J.; Yu, J. Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries. Carbon 2021, 173, 477–484. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, J.; Wang, J.; Pathiranage, S.; Oncel, N.; Robert Ilango, P.; Zhang, X.; Mann, M.; Hou, X. In Situ Synthesis of Graphene-Coated Silicon Monoxide Anodes from Coal-Derived Humic Acid for High-Performance Lithium-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2101645. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, Z.-S.; Ren, W.; Cheng, H.-M.; Bao, X. Graphene: A promising 2D material for electrochemical energy storage. Sci. Bull. 2017, 62, 724–740. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hu, X. Recent advances in porous carbon materials for electrochemical energy storage. Chem. Asian J. 2018, 13, 1518–1529. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Yu, F.; Zhang, Z.; Gao, X. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J. Mater. Chem. A 2015, 3, 11624–11630. [Google Scholar] [CrossRef]
- Aadil, M.; Zulfiqar, S.; Sabeeh, H.; Warsi, M.F.; Shahid, M.; Alsafari, I.A.; Shakir, I. Enhanced electrochemical energy storage properties of carbon coated Co3O4 nanoparticles-reduced graphene oxide ternary nano-hybrids. Ceram. Int. 2020, 46, 17836–17845. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Li, S.-T.; Shao, Y.-W.; Jin, X.-Z.; Qi, X.-D.; Yang, J.-H.; Zhou, Z.-W.; Wang, Y. Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability. Chem. Eng. J. 2020, 379, 122373. [Google Scholar] [CrossRef]
- He, D.; Zhang, Y.; Cao, D.; Sun, M.; Xia, J.; Yang, Y.; Ding, Y.; Chen, H. A flexible free-standing FeF3/reduced graphene oxide film as cathode for advanced lithium-ion battery. J. Alloys Compd. 2022, 909, 164702. [Google Scholar] [CrossRef]
- Park, S.; Oh, J.; Kim, J.M.; Guccini, V.; Hwang, T.; Jeon, Y.; Salazar-Alvarez, G.; Piao, Y. Facile preparation of cellulose nanofiber derived carbon and reduced graphene oxide co-supported LiFePO4 nanocomposite as enhanced cathode material for lithium-ion battery. Electrochim. Acta 2020, 354, 136707. [Google Scholar] [CrossRef]
- Kang, M.S.; Park, S.K.; Nakhanivej, P.; Shin, K.H.; Yeon, J.S.; Park, H.S. Mesoporous VO2(B) nanorods deposited onto graphene architectures for enhanced rate capability and cycle life of Li ion battery cathodes. J. Alloys Compd. 2021, 855, 157361. [Google Scholar] [CrossRef]
- Adepoju, A.A.; Doumbia, M.; Williams, Q.L. Graphene Nanoplatelet Additives for High C-rate LiFePO4 Battery Cathodes. Jom 2020, 72, 3170–3175. [Google Scholar] [CrossRef]
- Zeng, S.; Xu, Q.; Jin, H.; Zeng, L.; Wang, Y.; Lai, W.; Yao, Q.; Zhang, J.; Chen, Q.; Qian, Q. A green strategy towards fabricating FePO4-graphene oxide for high-performance cathode of lithium/sodium-ion batteries recovered from spent batteries. J. Electroanal. Chem. 2022, 913, 116287. [Google Scholar] [CrossRef]
- Liang, L.; Sun, X.; Zhang, J.; Hou, L.; Sun, J.; Liu, Y.; Wang, S.; Yuan, C. In Situ Synthesis of Hierarchical Core Double-Shell Ti-Doped LiMnPO4@NaTi(PO4)@C/3D Graphene Cathode with High-Rate Capability and Long Cycle Life for Lithium-Ion Batteries. Adv. Energy Mater. 2019, 9, 1802847. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, G.; Wu, B.; Liu, M.; Chen, J.; Xiang, W.; Li, W. N-Doped Graphene-Modified Li-Rich Layered Li1.2Mn0.6Ni0.2O2 Cathode for High-Performance Li-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 4307–4317. [Google Scholar] [CrossRef]
- Li, X.; Du, X.; Xu, Y.; Li, J.; Wang, Y.; Meng, Y.; Xiao, D. Three-Dimensional Holey Graphene Enwrapped Li(3) V(2) (PO(4))(3) /N-Doped Carbon Cathode for High-Rate and Long-Life Li-Ion Batteries. ChemSusChem 2022, 15, e202201459. [Google Scholar] [CrossRef]
- Chang, U.; Lee, J.T.; Yun, J.M.; Lee, B.; Lee, S.W.; Joh, H.I.; Eom, K.; Fuller, T.F. In Situ Self-Formed Nanosheet MoS(3)/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode. ACS Nano 2019, 13, 1490–1498. [Google Scholar] [PubMed]
- Xu, J.; Yin, Q.; Li, X.; Tan, X.; Liu, Q.; Lu, X.; Cao, B.; Yuan, X.; Li, Y.; Shen, L.; et al. Spheres of Graphene and Carbon Nanotubes Embedding Silicon as Mechanically Resilient Anodes for Lithium-Ion Batteries. Nano Lett. 2022, 22, 3054–3061. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jin, Y.; Wang, H.; Yang, X.; Zhang, P.; Wang, K.; Jiang, J. In Situ Growth of Covalent Organic Framework Nanosheets on Graphene as the Cathode for Long-Life High-Capacity Lithium-Ion Batteries. Adv. Mater. 2022, 34, e2203605. [Google Scholar] [CrossRef]
- Qureshi, Z.A.; Tariq, H.A.; Hafiz, H.M.; Shakoor, R.A.; AlQaradawi, S.; Kahraman, R. Influence of graphene wrapped-cerium oxide coating on spherical LiNi0.5Mn1.5O4 particles as cathode in high-voltage lithium-ion batteries. J. Alloys Compd. 2022, 920, 165989. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, X.; Lu, T.; Gong, Z.; Pan, L.; Guo, S. Hydrated vanadium pentoxide/reduced graphene oxide composite cathode material for high-rate lithium ion batteries. J. Colloid Interface Sci. 2021, 585, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Yu, Q.; Han, K.; Xing, L.; Bao, Y.; Wang, W. A novel graphene-wrapped corals-like NiSe2 for ultrahigh-capacity potassium ion storage. Carbon 2020, 161, 834–841. [Google Scholar] [CrossRef]
- Chong, S.; Sun, L.; Shu, C.; Guo, S.; Liu, Y.; Wang, W.; Liu, H.K. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy 2019, 63, 103868. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, E.; Yu, X.; Lu, B. Facile Synthesis of Copper Sulfide Nanosheet@Graphene Oxide for the Anode of Potassium-Ion Batteries. Energy Technol. 2020, 8, 1900987. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Jia, X.; Li, W.; Zhang, Q.; Fan, L.; Ding, H.; Yang, H.; Yu, X.; Li, X.; et al. Graphene Armored with a Crystal Carbon Shell for Ultrahigh-Performance Potassium Ion Batteries and Aluminum Batteries. ACS Nano 2019, 13, 10631–10642. [Google Scholar] [CrossRef]
- Yao, K.; Xu, Z.; Ma, M.; Li, J.; Lu, F.; Huang, J. Densified Metallic MoS2/Graphene Enabling Fast Potassium-Ion Storage with Superior Gravimetric and Volumetric Capacities. Adv. Funct. Mater. 2020, 30, 2001484. [Google Scholar] [CrossRef]
- Chee, W.K.; Lim, H.N.; Zainal, Z.; Huang, N.M.; Harrison, I.; Andou, Y. Flexible graphene-based supercapacitors: A review. J. Phys. Chem. C 2016, 120, 4153–4172. [Google Scholar] [CrossRef]
- Lakshmi, K.S.; Vedhanarayanan, B. High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batter. Supercaps 2023, 9, 202. [Google Scholar] [CrossRef]
- Kumar, R.; del Pino, A.P.; Sahoo, S.; Singh, R.K.; Tan, W.K.; Kar, K.K.; Matsuda, A.; Joanni, E. Laser processing of graphene and related materials for energy storage: State of the art and future prospects. Prog. Energy Combust. Sci. 2022, 91, 100981. [Google Scholar] [CrossRef]
- Sun, H.-J.; Liu, B.; Peng, T.-J.; Zhao, X.-L. Nitrogen-doped porous 3D graphene with enhanced supercapacitor properties. J. Mater. Sci. 2018, 53, 13100–13110. [Google Scholar] [CrossRef]
- Yun, Q.; Ge, Y.; Chen, B.; Li, L.; Wa, Q.; Long, H.; Zhang, H. Hybridization of 2D nanomaterials with 3D graphene architectures for electrochemical energy storage and conversion. Adv. Funct. Mater. 2022, 32, 2202319. [Google Scholar] [CrossRef]
- Khakpour, I.; Baboukani, A.R.; Forouzanfar, S.; Allagui, A.; Wang, C. In-situ exfoliation and integration of vertically aligned graphene for high-frequency response on-chip microsupercapacitors. J. Power Sources 2021, 516, 230701. [Google Scholar] [CrossRef]
- Salahdin, O.D.; Sayadi, H.; Solanki, R.; Parra, R.M.R.; Al-Thamir, M.; Jalil, A.T.; Izzat, S.E.; Hammid, A.T.; Arenas, L.A.B.; Kianfar, E. Graphene and carbon structures and nanomaterials for energy storage. Appl. Phys. A 2022, 128, 703. [Google Scholar] [CrossRef]
- He, C.; Qiu, S.; Sun, S.; Zhang, Q.; Lin, G.; Lei, S.; Han, X.; Yang, Y. Electrochemically active phosphotungstic acid assisted prevention of graphene restacking for high-capacitance supercapacitors. Energy Environ. Mater. 2018, 1, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Goda, E.S.; ur Rehman, A.; Pandit, B.; Al-Shahat Eissa, A.; Eun Hong, S.; Ro Yoon, K. Al-doped Co9S8 encapsulated by nitrogen-doped graphene for solid-state asymmetric supercapacitors. Chem. Eng. J. 2022, 428, 132470. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, F.; Zhao, Z.; Bai, P.; Ma, Y.; Alhadhrami, A.; Mersal, G.A.M.; Lin, Z.; Ibrahim, M.M.; El-Bahy, Z.M. Direct ink printing reduced graphene oxide/KCu7S4 electrodes for high-performance supercapacitors. Adv. Compos. Hybrid Mater. 2022, 5, 1516–1526. [Google Scholar] [CrossRef]
- Thalji, M.R.; Ali, G.A.M.; Liu, P.; Zhong, Y.L.; Chong, K.F. W18O49 nanowires-graphene nanocomposite for asymmetric supercapacitors employing AlCl3 aqueous electrolyte. Chem. Eng. J. 2021, 409, 128216. [Google Scholar] [CrossRef]
- Ansarinejad, H.; Shabani-Nooshabadi, M.; Ghoreishi, S.M. Facile synthesis of crumpled-paper like CoWO4-CoMn2O4/N-doped Graphene hybrid nanocomposites for high performance all-solid-state asymmetric supercapacitors. J. Energy Storage 2022, 45, 103513. [Google Scholar] [CrossRef]
- Huang, A.; El-Kady, M.F.; Chang, X.; Anderson, M.; Lin, C.W.; Turner, C.L.; Kaner, R.B. Facile Fabrication of Multivalent VOx/Graphene Nanocomposite Electrodes for High-Energy-Density Symmetric Supercapacitors. Adv. Energy Mater. 2021, 11, 2100768. [Google Scholar] [CrossRef]
- Kumar, S.; Rehman, M.A.; Lee, S.; Kim, M.; Hong, H.; Park, J.Y.; Seo, Y. Supercapacitors based on Ti(3)C(2)T(x) MXene extracted from supernatant and current collectors passivated by CVD-graphene. Sci. Rep. 2021, 11, 649. [Google Scholar] [CrossRef]
- Kim, B.-M.; Kim, H.-Y.; Ju, Y.-W.; Shin, J. Influence of the Perovskite La0.8Sr0.2Mn0.5Co0.5O3-δ on the Electrochemical Performance of the Graphene-Based Supercapacitor. Energies 2020, 13, 3030. [Google Scholar] [CrossRef]
- Le, Q.B.; Nguyen, T.-H.; Fei, H.; Bubulinca, C.; Munster, L.; Bugarova, N.; Micusik, M.; Kiefer, R.; Dao, T.T.; Omastova, M.; et al. Electrochemical performance of composite electrodes based on rGO, Mn/Cu metal–organic frameworks, and PANI. Sci. Rep. 2022, 12, 664. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Youssefi, M.; Raeissi, K.; Zhiani, M. Effect of the morphology of silver layer on electrical conductivity and electrochemical performance of silver/reduced graphene oxide/cotton fabric composite as a flexible supercapacitor electrode. J. Energy Storage 2021, 42, 103042. [Google Scholar] [CrossRef]
- Haghighi Poudeh, L.; Letofsky-Papst, I.; Cebeci, F.Ç.; Menceloglu, Y.; Yildiz, M.; Saner Okan, B. Facile Synthesis of Single- and Multi-Layer Graphene/Mn3O4 Integrated 3D Urchin-Shaped Hybrid Composite Electrodes by Core-Shell Electrospinning. ChemNanoMat 2019, 5, 792–801. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Wang, Y.H.; Wang, Y.T.; Xu, T.J.; Chang, P. Research progress on carbon materials as negative electrodes in sodium-and potassium-ion batteries. Carbon Energy 2022, 4, 1182–1213. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, H.; Sun, L.; Xu, F.; Ouyang, Y.; Rosei, F. Progress and perspectives of 2D materials as anodes for potassium-ion batteries. Energy Storage Mater. 2021, 38, 354–378. [Google Scholar] [CrossRef]
- Chen, H.; Guo, F.; Liu, Y.; Huang, T.; Zheng, B.; Ananth, N.; Xu, Z.; Gao, W.; Gao, C. A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 2017, 29, 1605958. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Tang, C.; Huang, X.; Nanjundan, A.K.; Zou, J.; Du, A.; Yu, C. Thermal Reductive Perforation of Graphene Cathode for High-Performance Aluminum-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2010569. [Google Scholar] [CrossRef]
- Xu, H.; Chen, H.; Gao, C. Advanced graphene materials for sodium/potassium/aluminum-ion batteries. ACS Mater. Lett. 2021, 3, 1221–1237. [Google Scholar] [CrossRef]
- Childress, A.S.; Parajuli, P.; Zhu, J.; Podila, R.; Rao, A.M. A Raman spectroscopic study of graphene cathodes in high-performance aluminum ion batteries. Nano Energy 2017, 39, 69–76. [Google Scholar] [CrossRef]
- Zhou, Q.; Zheng, Y.; Wang, D.; Lian, Y.; Ban, C.; Zhao, J.; Zhang, H. Cathode materials in non-aqueous aluminum-ion batteries: Progress and challenges. Ceram. Int. 2020, 46, 26454–26465. [Google Scholar] [CrossRef]
Composites | Specific Capacities (mAh/g) | Current Densities (A/g) | Capacity Retention (%) | Structure | References |
---|---|---|---|---|---|
P-doped graphene framework@porous Fe2O3 nanoframework | 1106 | 0.1 | 88.2 | hierarchical structure | [58] |
Epitaxial graphene@SiC | 964.1 | 0.1 | / | [59] | |
Si/SiO2@graphene | 1180 | 2.0 | 91 | Si/SiO2@graphene superstructure | [60] |
Amorphous Fe2O3/rGO/carbon nanofibers | 811 | 0.1 | / | hierarchical structure | [61] |
NiCo2S4@graphene sheets | 813 | 0.2 | 85.2 | mesoporous structure | [62] |
SiO2/N-doped graphene aerogel | 1000 | 0.1 | / | composite structure | [63] |
Si/C particles/graphene sheet | 1910.5 | 0.3579 | / | silicon/carbon particles on graphene sheets | [64] |
Carbon-coated stable Si/graphene/CNT/ carbonized poly-dopamine carbon layer | 1946 | 0.1 | 80.0 | composite structure | [65] |
Magnetite carbon nanofiber (rGO/Fe3O4 CNF) | 1514 | 0.1 | / | mesoporous structure | [66] |
vertical graphene sheets | 105.4 | 5 C | / | / | [67] |
D-SiO@G | 774 | 5 | / | / | [68] |
2D/2D SnSe2/graphene | 490.9 | 0.1 C | / | / | [53] |
Composites | Specific Capacities (mAh/g) | Current Densities | References |
---|---|---|---|
Cellulose nanofiber derived carbon and rGO co-supported LiFePO4 nanocomposite | 168.9 | 0.1 C | [75] |
VO2(B)/rGO | 226.0 | 0.05 A/g | [76] |
LiFePO4/graphene nanoplatelets | 153.0 | 0.1 C | [77] |
FePO4-GO | 145.0 | 0.5 C | [78] |
Core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene | 164.8 | 0.05 C | [79] |
Li1.2Mn0.6Ni0.2O2-N-doped graphene carbon matrix | 286.4 | 0.2 C | [80] |
3D holey graphene enwrapped Li3V2(PO4)3/N-doped carbon | 78.0 | 150 C | [81] |
MoS2/rGO | 900.0 | 5 C | [82] |
spheres of graphene and carbon nanotubes | 547 | 5 | [83] |
dual-porous COF, USTB-6 | 188 | 10 C | [84] |
VO2(B)/rGO | 226 | 50 m | [73] |
LiNi0.5Mn1.5O4 | 132.4 | 0.1 C | [85] |
V2O5·nH2O/reduced graphene oxide | 196 | 1 | [86] |
Composites | Capacities (F/g) | Condition | References |
---|---|---|---|
Al-doped Co9S8@N-doped graphene | 134.00 | Aqueous KOH electrolyte, 1 A/g | [100] |
rGO/KCu7S4 | 815.83 | 6M PVA/KOH, 0.5 A/g | [101] |
Anthraquinone-based covalent organic frameworks/ graphene composite aerogel | 378.0 | 1 M H2SO4 aqueous electrolyte, 1 A/g | [60] |
W18O49 nanowires-rGO | 365.5 | AlCl3 aqueous electrolyte, 1 A/g | [102] |
(Ni, Mo)S2/graphene | 2379.0 | Aqueous KOH electrolyte, 1 A/g | [23] |
CoWO4-CoMn2O4/N-doped graphene | 4133.3 | Aqueous KOH electrolyte, 2 A/g | [103] |
Graphene/VOx | 1110.0 | LiCl electrolyte | [104] |
Ti3C2Tx/graphene/Ni | 542.0 | 1 M H2SO4 electrolyte, 5 mV/s | [105] |
Perovskite material (La0.8Sr0.2Mn0.5Co0.5O3-δ. LSMCO) | 55.0 | 5 mV/s | [106] |
rGO/Cu-MOF@PANI | 5 | 276.0 A/g | [107] |
Ag/RGO/CF | 350 ± 9 | 5 mV/s | [108] |
Single- and Multi-Layer Graphene/Mn3O4 | 452 | 1 mV/s | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Wang, M.; Ye, X.; Liu, B.; Han, L.; Jafri, S.H.M.; Liu, W.; Zheng, X.; Ning, Y.; Li, H. Advances in the Field of Graphene-Based Composites for Energy–Storage Applications. Crystals 2023, 13, 912. https://doi.org/10.3390/cryst13060912
Du Y, Wang M, Ye X, Liu B, Han L, Jafri SHM, Liu W, Zheng X, Ning Y, Li H. Advances in the Field of Graphene-Based Composites for Energy–Storage Applications. Crystals. 2023; 13(6):912. https://doi.org/10.3390/cryst13060912
Chicago/Turabian StyleDu, Yining, Mingyang Wang, Xiaoling Ye, Benqing Liu, Lei Han, Syed Hassan Mujtaba Jafri, Wencheng Liu, Xiaoxiao Zheng, Yafei Ning, and Hu Li. 2023. "Advances in the Field of Graphene-Based Composites for Energy–Storage Applications" Crystals 13, no. 6: 912. https://doi.org/10.3390/cryst13060912
APA StyleDu, Y., Wang, M., Ye, X., Liu, B., Han, L., Jafri, S. H. M., Liu, W., Zheng, X., Ning, Y., & Li, H. (2023). Advances in the Field of Graphene-Based Composites for Energy–Storage Applications. Crystals, 13(6), 912. https://doi.org/10.3390/cryst13060912