Synthesis of Nano-Crystalline Whiskers of Cheese and Their Efficacy against Cadmium Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanowhiskers
2.2. Characterization of Nanowhiskers
- (i)
- The size and morphology of nanoparticles was assessed using a Zeta sizer (ZEN 3600, MALVERN, United Kingdom) and transmission electron microscopy (TEM, JEM-1400, JEOL, Tokyo, Japan).
- (ii)
- The constituent functional groups in the samples were mapped using Fourier transform infrared (FTIR) spectroscopy (Perkin-Elmer FTIR spectrum BX, Waltham, MA, USA).
- (iii)
- Diffraction patterns were recorded using a PAN Analytical XPert PRO (Amsterdam, The Netherlands) operated at 40 mA and 45 kV using CuK radiation (0.15406 nm).
- (iv)
- The differential scanning calorimetry (DSC) curves for both bulk cheese and nanowhiskers were obtained using a differential scanning calorimeter (DSC-4000 Perkin Elmer, Waltham, MA, USA) equipment.
- (v)
- The constituent volatile compounds in the bulk cheese and the nanowhiskers were analyzed by gas chromatography-mass spectrometry. The sample was injected into a gas chromatograph with a mass detector (GC-MS; Agilent 6890 Series GC system with Agilent 5973 mass selective detector; Agilent, Santa Clara, CA, USA). The injector temperature was 250 °C, and the desorption time was 10 min.
2.3. Chemicals and Techniques for Bioassays
2.4. Experimental Design
3. Results and Discussion
3.1. Characterization of Nanowhiskers
3.2. Bioassays
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Bhattacharya, S. The Role of Probiotics in the Amelioration of Cadmium Toxicity. Biol. Trace Elem. Res. 2020, 197, 440–444. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Lech, T.; Sadlik, J.K. Cadmium concentration in human autopsy tissues. Biol. Trace Elem. Res. 2017, 179, 172–177. [Google Scholar] [CrossRef]
- Bhattacharya, S. The role of medicinal plants and natural products in amelioration of cadmium toxicity. Orient. Pharm. Exp. Med. 2018, 18, 177–186. [Google Scholar] [CrossRef]
- Bhattacharya, S. Medicinal plants and natural products can play a significant role in mitigation of mercury toxicity. Interdiscip. Toxicol. 2018, 11, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, N.; Elobeid, M.; Virk, P. Protective Effect of Quercetin Treatment against Cadmium-Induced Oxidative Stress in a Male Rat Model. Pak. J. Zool. 2019, 51, 2287. [Google Scholar] [CrossRef]
- Al-Ghamdi, N.A.M.; Virk, P.; Hendi, A.; Awad, M.; Elobeid, M. Antioxidant potential of bulk and nanoparticles of naringenin against cadmium-induced oxidative stress in Nile tilapia, Oreochromis niloticus. Green Process. Synth. 2021, 10, 392–402. [Google Scholar] [CrossRef]
- Torres, S.; Contreras, L.; Verón, H.; Isla, M.I. Chapter 10—Prospects of dairy and vegetables-based food products in human health: Current status and future directions. In Research and Technological Advances in Food Science; Prakash, B., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 243–267. [Google Scholar]
- Al-Enazi, A.M.M.; Virk, P.; Hindi, A.; Awad, M.A.; Elobeid, M.; Qindeel, R. Protective effect of probiotic bacteria and its nanoformulation against cadmium-induced oxidative stress in male Wistar rat. J. King Saud. Univ. Sci. 2020, 32, 3045–3051. [Google Scholar] [CrossRef]
- Foligné, B.; Daniel, C.; Pot, B. Probiotics from research to market: The possibilities, risks and challenges. Curr. Opin. Microbiol. 2013, 16, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Tian, F.; Zhao, J.; Zhang, H.; Narbad, A.; Chen, W. Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Appl. Environ. Microbiol. 2016, 82, 4429–4440. [Google Scholar] [CrossRef] [Green Version]
- Plessas, S.; Bosnea, L.; Alexopoulos, A.; Bezirtzoglou, E. Potential effects of probiotics in cheese and yogurt production: A review. Eng. Life Sci. 2012, 12, 433–440. [Google Scholar] [CrossRef]
- Basilicata, M.G.; Pepe, G.; Adesso, S.; Ostacolo, C.; Sala, M.; Sommella, E.; Scala, M.C.; Messore, A.; Autore, G.; Marzocco, S.; et al. Antioxidant Properties of Buffalo-Milk Dairy Products: A β-Lg Peptide Released after Gastrointestinal Digestion of Buffalo Ricotta Cheese Reduces Oxidative Stress in Intestinal Epithelial Cells. Int. J. Mol. Sci. 2018, 19, 1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkushi, A.G.; Abdelfattah-Hassan, A.; Eldoumani, H.; Elazab, S.T.; Mohamed, S.A.; Metwally, A.S.; El-Shetry, E.S.; Saleh, A.A.; ElSawy, N.A.; Ibrahim, D. Probiotics-loaded nanoparticles attenuated colon inflammation, oxidative stress, and apoptosis in colitis. Sci. Rep. 2022, 12, 5116. [Google Scholar] [CrossRef]
- Virk, P.; Awad, M.A.; Elobeid, M.A.; Ortashi, K.M.O.; Hendi, A.A. Fabrication of Probiotics Nanowhiskers Using Cheese. U.S. Patent 10,517,905 B1, 31 December 2019. [Google Scholar]
- Jama, A.M.; Mitić-Ćulafić, D.; Kolarević, S.; Đurašević, S.F.; Knežević-Vukčević, J. Protective effect of probiotic bacteria against cadmium-induced genotoxicity in rat hepatocytes In vivo and In Vitro. Arch. Biol. Sci. 2012, 64, 1197–1206. [Google Scholar] [CrossRef]
- Lim, J.; Yeap, S.P.; Che, H.X.; Low, S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Grigoraviciute-Puroniene, I.; Zarkov, A.; Tsuru, H.; Ishikawa, K.; Kareiva, A. A novel synthetic approach for the calcium hydroxyapatite from the food products. J. Solgel. Sci. Technol. 2019, 91, 63–71. [Google Scholar] [CrossRef]
- Sen, P.; Ghosh, J.; Abdullah, A.; Kumar, P. Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J. Chem. Sci. 2003, 115, 499–508. [Google Scholar] [CrossRef]
- Sakkas, L.; Pappas, C.S.; Moatsou, G. FT-MIR Analysis of water-soluble extracts during the ripening of sheep milk cheese with different phospholipid content. Dairy 2021, 2, 530–541. [Google Scholar] [CrossRef]
- Karoui, R.; Mouazen, A.M.; Dufour, É.; Pillonel, L.; Picque, D.; Bosset, J.-O.; De Baerdemaeker, J. Mid-infrared spectrometry: A tool for the determination of chemical parameters in Emmental cheeses produced during winter. Lait 2006, 86, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley and Sons: West Sussex, UK, 2001; pp. 229–338. [Google Scholar]
- Alatini, E.; Sakkas, L.; Moatsou, G. Use of sweet sheep buttermilk in the manufacture of reduced-fat sheep milk cheese. Int. Dairy J. 2021, 120, 105079. [Google Scholar]
- Bagre, A.P.; Jain, K.; Jain, N.K. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: In vitro and in vivo assessment. Int. J. Pharm. 2013, 456, 31–40. [Google Scholar] [CrossRef]
- Marinho, M.T.; Bersot, L.D.; Nogueira, A.; Colman, T.A.D.; Schnitzler, E. Antioxidant effect of dehydrated rosemary leaves in ripened semi-hard cheese: A study using coupled TG–DSC–FTIR (EGA). LWT-Food.Sci.Technol. 2015, 63, 1023–1028. [Google Scholar] [CrossRef] [Green Version]
- Surat, P. Presenting GC-MS Results in a Publication. News-Medical. Available online: https://www.news-medical.net/life-sciences/Presenting-GC-MS-Results-in-a-Publication.aspx.2019 (accessed on 27 February 2023).
- Harisaranraj, R.; Suresh, K.; Saravana Babu, S.; Achudhan, V.V. Phytochemical based strategies for pathogen control and antioxidant capacities of Rauwolfia serpentina extracts. Recent Res. Sci. Technol. 2009, 1, 67–73. [Google Scholar]
- Stelios, K.; Paraskevi, S.; Theophilos, M.; Aikaterini, G. Study of organic acids, volatile fraction and caseins of a new Halloumi-type cheese during ripening in whey brine. Int. J. Food Sci. Technol. 2009, 44, 297–304. [Google Scholar] [CrossRef]
- Eisenstecken, D.; Stanstrup, J.; Robatscher, P.; Huck, C.W.; Oberhuber, M. Fatty acid profiling of bovine milk and cheese from six European areas by GC-FID and GC-MS. Int. J. Dairy Technol. 2021, 74, 215–224. [Google Scholar] [CrossRef]
- Ianni, A.; Bennato, F.; Martino, C.; Grotta, L.; Martino, G. Volatile Flavor Compounds in Cheese as Affected by Ruminant Diet. Molecules 2020, 25, 461. [Google Scholar] [CrossRef] [Green Version]
- Lobay, D. Rauwolfia in the Treatment of Hypertension. Integr. Med. 2015, 14, 40–46. [Google Scholar]
- Das, A.; Roy, A.; Das, R.; Bhattacharya, S.; Haldar, P.K. Naringenin alleviates cadmium-induced toxicity through the abrogation of oxidative stress in Swiss albino mice. J. Environ. Pathol. Toxicol. Oncol. 2016, 35, 161–169. [Google Scholar] [CrossRef]
- Hyun, J.S.; Satsu, H.; Shimizu, M. Cadmium induces Interleukin-8 production via NF-_B activation in the human intestinal epithelial cell, Caco-2. Cytokine 2007, 37, 26–34. [Google Scholar] [CrossRef]
- Basuroy, S.; Sheth, P.; Kuppuswamy, D.; Balasubramanian, S.; Ray, R.M.; Rao, R.K. Expression of kinase-inactive c-Src delays oxidative stress induced disassembly and accelerates calcium-mediated reassembly of tight junctions in the Caco-2 cell monolayer. J. Biol. Chem. 2003, 278, 11916–11924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banan, A.; Choudhary, S.; Zhang, Y.; Fields, J.; Keshavarzian, A. Ethanol-induced barrier dysfunction and its prevention by growth factorsNin human intestinal monolayers: Evidence for oxidative and cytoskeletalNmechanisms. J. Pharmacol. Exp. Ther. 1999, 291, 1075–1085. [Google Scholar]
- Djurasevic, S.; Jama, A.; Jasnic, N.; Vujovic, P.; Jovanovic, M.; Mitic-Culafic, D.; Knezevic-Vukcevic, J.; Cakic-Milosevic, M.; Ilijevic, K.; Djordjevic, J. The Protective Effects of Probiotic Bacteria on Cadmium Toxicity in Rats. J. Med. Food. 2017, 20, 189–196. [Google Scholar] [CrossRef]
- Feng, P.; Yang, J.; Zhao, S.; Ling, Z.; Han, R.; Wu, Y.; Salama, E.S.; Kakade, A.; Khan, A.; Jin, W.; et al. Human supplementation with Pediococcus acidilactici GR-1 decreases heavy metals levels through modifying the gut microbiota and metabolome. npj Biofilms Microbiomes 2022, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.R.; Villegas, I.; La Casa, C.; de la Lastra, C.A. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem. Pharmacol. 2004, 67, 1399–1410. [Google Scholar] [CrossRef]
- Steijns, J.M.; van Hooijdonk, A.C. Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. Br. J. Nutr. 2000, 84, S11–S17. [Google Scholar] [CrossRef]
- Lindmark-Månsson, H.; Åkesson, B. Antioxidative factors in milk. Br. J. Nutr. 2000, 84, S103–S110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Mann, B.; Kumar, R.; Sangwan, R.B. Antioxidant activity of Cheddar cheeses at different stages of ripening. Int. J. Dairy Technol. 2009, 62, 339–347. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. Effect of genetic type on antioxidant activity of Caciocavallo cheese during ripening. J. Dairy Sci. 2015, 98, 3690–3694. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspa, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef] [Green Version]
- Revilla, I.; González-Martín, M.I.; Vivar-Quintana, A.M.; Blanco-López, M.A.; Lobos-Ortega, I.A.; Hernández-Hierro, J.M. Antioxidant capacity of different cheeses: Affecting factors and prediction by near infrared spectroscopy. J. Dairy Sci. 2016, 99, 5074–5082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S. Probiotics against alleviation of lead toxicity: Recent advances. Interdiscip. Toxicol. 2019, 12, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Bhakta, J.N.; Ohnishi, K.; Munekage, Y.; Iwasaki, K.; Wei, M.Q. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. J. Appl. Microbiol. 2012, 112, 1193–1206. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Megeed, R.M. Probiotics: A Promising Generation of Heavy Metal detoxification. Biol. Trace Elem. Res. 2021, 199, 2406–2413. [Google Scholar] [CrossRef] [PubMed]
- Ninkov, M.; Popov Aleksandrov, A.; Demenesku, J.; Mirkov, I.; Mileusnic, D.; Petrovic, A.; Grigorov, I.; Zolotarevski, L.; Tolinacki, M.; Kataranovski, D.; et al. Toxicityof oral cadmium intake: Impact on gut immunity. Toxicol. Lett. 2015, 237, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Qu, D.; Feng, S.; Yu, Y.; Yu, L.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Oral supplementation of lead intolerant intestinal microbes protects against lead (Pb) toxicity in mice. Front. Microbiol. 2020, 10, 3161. [Google Scholar] [CrossRef] [PubMed]
Frequency Range | Functional Group | Compound Class |
---|---|---|
3400 cm−1 | N-H stretching | Aliphatic primar amine |
2854–2924 cm−1 | C-H stretching | Alkane |
2371–2372 cm−1 | O=C=O | Carbon dioxide |
1744 cm−1 | C=O stretching | Cyclopentanone |
1655–1600 cm−1 | C=C stretching | Alkene |
Bulk Cheese | Nanowhiskers | ||
---|---|---|---|
Retention Time | Compound | Retention Time | |
9.828 min | Rescinnamin (alkaloid) | 9.506 | Rescinnamin (alkaloid) |
10.023 min | Rescinnamine (alkaloid) | 10.214 min | Rescinnamine (alkaloid) |
32.481 min | n-Tridecanol-1-ol (fatty alcohol) | 24.595 min | Undecanol |
39.070 min | n-Tridecyl alcohol | 30.148 min | Pentadecanol |
32.481 min | n-Tridecanol-1-ol (fatty alcohol) | ||
39.066 min | n-Tridecan-1-ol (fatty alcohol) | ||
44.867 min | Tridecene-1 |
Experimental Groups | Serum, MDA Levels (nmol/mL) |
---|---|
Control | 0.80 ± 0.02 a |
Cd | 1.50 ± 0.19 b |
Cd + ChNano | 0.95 ± 0.06 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, M.A.; Alanazi, M.M.; A. Hendi, A.; Virk, P.; Alrowaily, A.W.; Bahlool, T.; Al-Abbas, F.; Aouaini, F.; Ortashi, K.M.O. Synthesis of Nano-Crystalline Whiskers of Cheese and Their Efficacy against Cadmium Toxicity. Crystals 2023, 13, 1013. https://doi.org/10.3390/cryst13071013
Awad MA, Alanazi MM, A. Hendi A, Virk P, Alrowaily AW, Bahlool T, Al-Abbas F, Aouaini F, Ortashi KMO. Synthesis of Nano-Crystalline Whiskers of Cheese and Their Efficacy against Cadmium Toxicity. Crystals. 2023; 13(7):1013. https://doi.org/10.3390/cryst13071013
Chicago/Turabian StyleAwad, Manal A., Meznah M. Alanazi, Awatif A. Hendi, Promy Virk, Albandari W. Alrowaily, Taghreed Bahlool, Fatimah Al-Abbas, Fatma Aouaini, and Khalid M. O. Ortashi. 2023. "Synthesis of Nano-Crystalline Whiskers of Cheese and Their Efficacy against Cadmium Toxicity" Crystals 13, no. 7: 1013. https://doi.org/10.3390/cryst13071013
APA StyleAwad, M. A., Alanazi, M. M., A. Hendi, A., Virk, P., Alrowaily, A. W., Bahlool, T., Al-Abbas, F., Aouaini, F., & Ortashi, K. M. O. (2023). Synthesis of Nano-Crystalline Whiskers of Cheese and Their Efficacy against Cadmium Toxicity. Crystals, 13(7), 1013. https://doi.org/10.3390/cryst13071013