Photoaligned Tunable Liquid Crystal Lenses with Parabolic Phase Profile
Abstract
:1. Introduction
2. Modeling the LC Lens
3. Director Reorientation under Action of Externally Applied Voltage in the Cell with Modulated Anchoring Energy
4. Light Propagation through LC Cell Subjected to Externally Applied Voltage
5. Aberration of LC Lens with Modulated Anchoring Energy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sato, S. Liquid-Crystal Lens-Cells with Variable Focal Length. Jpn. J. Appl. Phys. 1979, 18, 1679. [Google Scholar] [CrossRef]
- Riza, N.A.; DeJule, M.C. Three-terminal adaptive nematic liquid-crystal lens device. Opt. Lett. 1994, 19, 1013–1015. [Google Scholar] [CrossRef]
- Ren, H.; Wu, S.-T. Tunable electronic lens using a gradient polymer network liquid crystal. Appl. Phys. Lett. 2003, 82, 22–24. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Yokoyama, Y.; Sato, S. Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls. Appl. Phys.Lett. 2006, 89, 141112. [Google Scholar] [CrossRef]
- Ye, M.; Wang, B.; Sato, S. Liquid crystal lens with focus movable in focal plane. Opt. Commun. 2006, 259, 710–722. [Google Scholar] [CrossRef]
- Algorri, J.F.; Morawiak, P.; Bennis, N.; Zografopoulos, D.C.; Urruchi, V.; Rodríguez-Cobo, L.; Jaroszewicz, L.R.; Sánchez-Pena, J.M.; López-Higuera, J.M. Positive-negative tunable liquid crystal lenses based on a microstructured transmission line. Sci. Rep. 2020, 10, 10153. [Google Scholar] [CrossRef]
- Feng, W.; Liu, Z.; Liu, H.; Ye, M. Design of Tunable Liquid Crystal Lenses with a Parabolic Phase Profile. Crystals 2023, 13, 8. [Google Scholar] [CrossRef]
- Lucchetti, L.; Tasseva, J. Optically recorded tunable microlenses based on dye-doped liquid crystal cells. Appl. Phys. Lett. 2012, 100, 181111. [Google Scholar] [CrossRef]
- Lucchetti, L.; Catani, L.; Simoni, F. Light-controlled electric Freedericksz threshold in dye doped liquid crystals. J. Appl. Phys. 2014, 115, 203111. [Google Scholar] [CrossRef]
- Francescangeli, O.; Lucchetti, L.; Simoni, F.; Stanić, V.; Mazzulla, A. Light-induced molecular adsorption and reorientation at polyvinylcinnamate-fluorinated/liquid-crystal interface. Phys. Rev. E 2005, 71, 011702. [Google Scholar] [CrossRef]
- Lucchetti, L.; Gentili, M.; Simoni, F. Colossal optical nonlinearity induced by a low frequency external electric field in dye-doped liquid crystals. Opt. Express 2006, 14, 2236–2241. [Google Scholar] [CrossRef]
- Algorri, J.F.; Zografopoulos, D.C.; Urruchi, V.; Sánchez-Pena, J.M. Recent Advances in Adaptive Liquid Crystal Lenses. Crystals 2019, 9, 272. [Google Scholar] [CrossRef] [Green Version]
- Zhan, T.; Lee, Y.-H.; Tan, G.; Xiong, J.; Yin, K.; Gou, F.; Zou, J.; Zhang, N.; Zhao, D.; Yang, J.; et al. Pancharatnam–Berry optical elements for head-up and near-eye displays. Opt. Soc. Am. B 2019, 36, D52–D65. [Google Scholar] [CrossRef]
- Ma, Y.; Tam, A.M.W.; Gan, X.T.; Shi, L.Y.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.-S.; Zhao, J.L. Fast switching ferroelectric liquid crystal Pancharatnam–Berry lens. Opt. Express 2019, 27, 10079–10086. [Google Scholar] [CrossRef]
- Jamali, A.; Bryant, D.; Zhang, Y.; Grunnet-Jepsen, A.; Bhowmik, A.; Bos, P.J. Design of a large aperture tunable refractive Fresnel liquid crystal lens. Appl. Opt. 2018, 57, B10–B19. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Avci, N.; Hwang, S.-J. High-diffraction-efficiency Fresnel lens based on annealed blue-phase liquid crystal–polymer composite. Liq. Cryst. 2019, 46, 1359–1366. [Google Scholar] [CrossRef]
- Chu, F.; Guo, Y.-Q.; Zhang, Y.-X.; Duan, W.; Zhang, H.-L.; Tian, L.-L.; Li, L.; Wang, Q.-H. Four-mode 2D/3D switchable display with a 1D/2D convertible liquid crystal lens array. Opt. Express 2021, 29, 37464–37475. [Google Scholar] [CrossRef]
- Li, H.; Li, T.; Chen, S.; Wu, Y. Photoelectric hybrid neural network based on ZnO nematic liquid crystal microlens array for hyperspectral imaging. Opt. Express 2023, 31, 7643–7658. [Google Scholar] [CrossRef]
- Kumar, M.B.; Kang, D.; Jung, J.; Park, H.; Hahn, J.; Choi, M.; Bae, J.-H.; Kim, H.; Park, J. Compact vari-focal augmented reality display based on ultrathin, polarization-insensitive, and adaptive liquid crystal lens. Opt. Laser Eng. 2020, 128, 106006. [Google Scholar] [CrossRef] [Green Version]
- Dyadyusha, A.G.; Marusii, T.Y.; Reznikov, Y.A.; Khizhniak, A.I.; Reshetnyak, V.Y. Orientational effect due to a change in the anisotropy of the interaction between a liquid crystal and a bounding surface. JETP Lett. 1992, 56, 17–21. [Google Scholar]
- Schadt, M.; Seiberle, H.; Schuster, A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature 1996, 381, 212–215. [Google Scholar] [CrossRef]
- Chigrinov, V.G.; Kozenkov, V.M.; Kwok, H.-S. Photoalignment of Liquid Crystalline Materials: Physics and Application; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; 231p. [Google Scholar]
- Alexei, D.; Kiselev, V.; Chigrinov, V.G.; Huang, D.D. Photoinduced ordering and anchoring properties of azo-dye films. Phys. Rev. E 2005, 72, 061703. [Google Scholar] [CrossRef] [Green Version]
- Murauski, A.; Chigrinov, V.; Kwok, H.-S. New properties and applications of rewritable azo-dye photoalignment. J. Soc. Inf. Disp. 2008, 16, 927–931. [Google Scholar] [CrossRef]
- Fuh, A.Y.-G.; Lin, T.-H.; Jan, H.-C.; Hung, Y.; Fuh, H.R. Optically Rewritable Reflective Liquid Crystal Display. Dig. Tech. Pap.-Soc. Inf. Disp. Int. Symp. 2006, 37, 1257. [Google Scholar] [CrossRef]
- Yaroshchuk, O.; Reznikov, Y. Photoalignment of liquid crystals: Basics and current trends. J. Mat. Chem. 2012, 22, 286–300. [Google Scholar] [CrossRef]
- Reshetnyak, V.Y.; Sova, O.; Wang, Y.-J.; Lin, Y.-H. Modeling liquid crystal lenses. In Proceedings Volume 11303, Emerging Liquid Crystal Technologies XV, Proceedings of the 2020 SPIE Opto, San Francisco, CA, USA, 1–6 February 2020; SPIE: Bellingham, WA, USA, 2020. [Google Scholar]
- Takatoh, K.; Hasegawa, M.; Koden, M.; Itoh, N.; Hasegawa, R.; Sakamoto, M. Alignment Technologies and Applications of Liquid Crystal Devices; Taylor & Francis: Abingdon, UK, 2005; ISBN 0-748-40902-5. [Google Scholar]
- de Gennes, P.G.; Prost, J. The Physics of Liquid Crystals, 2nd ed.; Clarendon Press: Oxford, UK, 1993; 614p. [Google Scholar]
- Lucchetti, L.; Nava, G.; Barboza, R.; Ciciulla, F.; Bellini, T. Optical force-based detection of splay and twist viscoelasticity of CCN47 across the Nematic-to-Smectic A transition. Mol. Liq. 2021, 329, 115520. [Google Scholar] [CrossRef]
- Nowinowski-Kruszelnicki, E.; Kedzierski, J.; Raszewski, Z.; Jaroszewicz, L.; Dabrowski, R.; Kojdecki, M.; Piecek, W.; Perkowski, P.; Garbat, K.; Olifierczuk, M.; et al. High birefringence liquid crystal mixtures for electro-optical devices. Opt. Appl. 2012, 42, 167–180. [Google Scholar]
- Reuter, M.; Vieweg, N.; Fischer, B.M.; Mikulicz, M.; Koch, M.; Garbat, K.; Dąbrowski, R. Highly birefringent, low-loss liquid crystals for terahertz applications. APL Mater. 2013, 1, 012107. [Google Scholar] [CrossRef] [Green Version]
- Goodman, J.W. Introduction to Fourier Optics; McGraw Hill: New York, NY, USA, 2002. [Google Scholar]
- Lin, Y.-H.; Wang, Y.-J.; Reshetnyak, V.Y. Liquid crystal lenses with tunable focal length. Liq. Cryst. Rev. 2017, 5, 111–143. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E.W. Principles of Optics; Pergamon Press: Oxford, UK, 1991. [Google Scholar]
- Valyukh, S.; Chigrinov, V.G.; Kwok, H.S. 44.3: A Liquid Crystal Lens with Non-uniform Anchoring Energy. SID Symp. Dig. Tech. Pap. 2008, 39, 659–662. [Google Scholar] [CrossRef]
- Bielykh, S.P.; Subota, S.L.; Reshetnyak, V.Y.; Galstian, T. Electro-Optical Characteristics of a Liquid Crystal Lens with Polymer Network. Ukr. J. Phys. 2010, 55, 294–298. [Google Scholar]
1 | Lens Width | ||
2 | Aperture of the lens | ||
3 | Minimum anchoring energy | ||
4 | Splay elastic constant | ||
5 | Bend elastic constant | ||
6 | LC cell thickness | ||
7 | AC electric field frequency | ||
8 | LC electric conductivity | ||
9 | LC dielectric constant in the direction perpendicular to n | ||
10 | Vacuum dielectric constant | ||
11 | LC dielectric constant in the direction parallel to n | ||
12 | Refractive index of ordinary way | ||
13 | Refractive index of extraordinary way | ||
14 | rad | Direction of easy axis at the top substrate (pretilt angle) | |
15 | Applied voltage to the cell | ||
16 | rad | Direction of easy axis at the bottom substrate (pretilt angle) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielykh, S.P.; Lucchetti, L.; Reshetnyak, V.Y. Photoaligned Tunable Liquid Crystal Lenses with Parabolic Phase Profile. Crystals 2023, 13, 1104. https://doi.org/10.3390/cryst13071104
Bielykh SP, Lucchetti L, Reshetnyak VY. Photoaligned Tunable Liquid Crystal Lenses with Parabolic Phase Profile. Crystals. 2023; 13(7):1104. https://doi.org/10.3390/cryst13071104
Chicago/Turabian StyleBielykh, Svitlana P., Liana Lucchetti, and Victor Yu. Reshetnyak. 2023. "Photoaligned Tunable Liquid Crystal Lenses with Parabolic Phase Profile" Crystals 13, no. 7: 1104. https://doi.org/10.3390/cryst13071104
APA StyleBielykh, S. P., Lucchetti, L., & Reshetnyak, V. Y. (2023). Photoaligned Tunable Liquid Crystal Lenses with Parabolic Phase Profile. Crystals, 13(7), 1104. https://doi.org/10.3390/cryst13071104