Properties and Potential Application of Lead-Free (BaZr0.2Ti0.8O3) and Lead-Based (PbZr0.52Ti0.48O3) Flexible Thick Films
Abstract
:1. Introduction
2. Methods
2.1. Experimental Procedure
2.2. Characterization of Powders and Composite Films
2.3. Preparation of Films for Testing
3. Results and Discussion
Flexible Films Obtained from Prepared Solid-State BZT Powders
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maiwa, H. Piezoelectric energy harvesting. In Piezoelectric Materials; Ogawa, T., Ed.; Intech: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Duan, X.; Xie, M.; Aw, K.C.; Xue, Q. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: A Review. Micromachines 2020, 11, 1076. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, M.; Ma, R.; Yuan, Q.; Yang, D.; Cui, B.; Ma, C.; Liu, M.; Hu, D. Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. J. Mater. Chem. A 2020, 8, 884–917. [Google Scholar] [CrossRef]
- Nayak, B.; Mansingh, A.; Machwe, M.K. Dielectric studies of PZT-polymer composites. J. Mater. Sci. 1990, 25, 749–752. [Google Scholar] [CrossRef]
- Elahi, H.; Munir, K.; Eugeni, M.; Atek, S.; Gaudenzi, P. Energy harvesting towards self-powered IoT devices. Energies 2020, 13, 5528. [Google Scholar] [CrossRef]
- Costa, P.; Nunes-Pereira, J.; Pereira, N.; Castro, N. Sérgio Gonçalves, Senentxu Lanceros-Mendez, Recent progress on piezoelectric, pyroelectric, and magnetoelectric polymer-based energy-harvesting devices. Energy Technol. 2019, 7, 1800852. [Google Scholar] [CrossRef]
- Khan, F.; Kowalchik, T.; Roundy, S.; Warren, R. Stretching-induced phase transitions in barium titanate-poly(vinylidene fluoride) flexible composite piezoelectric films. Scr. Matr. 2021, 193, 64–70. [Google Scholar] [CrossRef]
- Marchiori, B.; Regal, S.; Arango, Y.; Delattre, R.; Blayac, S.; Ramuz, M. PVDF-TrFE-based stretchable contact and non-contact temperature sensor for e-skin Application. Sensors 2020, 20, 623. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, V.; Srivastava, G. Effect of thermal processing conditions on the structure and dielectric properties of PVDF films. J. Polym. Res. 2014, 21, 587. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phase of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Sukumaran, S.; Chatbouri, S.; Rouxel, D.; Tisserand, E.; Thiebaud, F.; Zineb, T.B. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. J. Intell. Mater. Syst. Struct. 2021, 32, 746–780. [Google Scholar] [CrossRef]
- Xia, W.; Zhang, Z. PVDF-based dielectric polymer and their applications in electronic materials. IET Nanodielectr. 2018, 1, 17–31. [Google Scholar] [CrossRef]
- Zou, D.; Liu, S.; Zhang, C.; Hong, Y.; Zhang, G.; Yang, Z. Flexible and translucent PZT films enhanced by the compositionally graded heterostructure for human body monitoring. Nano Energy. 2021, 85, 105984. [Google Scholar] [CrossRef]
- Wankhade, S.H.; Tiwari, S.; Gaur, A. Pralay Maiti, PVDF–PZT nanohybrid based nanogenerator for energy harvesting applications. Energy Report 2020, 6, 358–364. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gaur, H.; Kulkarni, M.; Patil, G.; Bhattacharya, B.; Sharma, A. PZT–PDMS composite for active damping of vibrations, Compos. Sci. Technol. 2013, 77, 42–51. [Google Scholar]
- Xu, L.; Xu, Y. Effect of Zr4+ content on crystal structure, micromorphology, ferroelectric and dielectric properties of Ba(ZrxTi1−x)O3 ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 5492–5498. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, H.; Kumar, S.; Thakur, S.; Kotnala, R.K.; Negi, N.S. Analysis of sintering temperature effects on structural, dielectric, ferroelectric, and piezoelectric properties of BaZr0.2Ti0.8O3 ceramics prepared by sol–gel method. J. Mater. Sci. Mater. Electron. 2020, 31, 19168–19179. [Google Scholar] [CrossRef]
- Badapanda, T.; Senthil, V.; Anwar, S.; Cavalcante, L.S.; Batista, N.C.; Longo, E. Structural and dielectric properties of polyvinyl alcohol/barium zirconium titanate polymere ceramic composite. Curr. Appl. Phys. 2013, 13, 1490–1495. [Google Scholar] [CrossRef]
- Shin, D.J.; Ji, J.H.; Kim, J.; Jo, G.H.; Jeong, S.J.; Koh, J.H. Enhanced flexible piezoelectric energy harvesters based on BaZrTiO3-BaCaTiO3 nanoparticles/PVDF composite films with Cu floating electrodes. J. Alloys Compd. 2019, 802, 562–572. [Google Scholar] [CrossRef]
- Dash, S.; Thakur, V.N.; Kumar, A.; Mahaling, R.N.; Patel, S.; Thomas, R.; Sahoo, B.; Pradhan, D.K. Enhancing functional properties of PVDF-HFP/BZT-BCT polymer-ceramic composites by surface hydroxylation of ceramic fillers. Ceram. Int. 2012, 47, 33563–33576. [Google Scholar] [CrossRef]
- Mitharwal, C.; Geetanjali; Malhotra, S.; Bagla, A.; Srivastava, M.K.; Gupta, S.M.; Singh Negia, C.M.; Kara, E.; Kulkarnid, A.R.; Mitra, S. Performance of dopamine modified 0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 filler in PVDF nanocomposite as flexible energy storage and harvester. J. Alloys Compd. 2021, 876, 160141. [Google Scholar] [CrossRef]
- Vijatovic Petrovica, M.; Cordero, F.; Mercadelli, E.; Brunengo, E.; Ilic, N.; Galassi, C.; Despotovic, Z.; Bobic, J.; Dzunuzovic, A.; Stagnaro, P.; et al. Flexible lead-free NBT-BT/PVDF composite films by hot pressing for low- energy harvesting and storage. J. Alloys Compd. 2021, 884, 161071. [Google Scholar] [CrossRef]
- Leung, C.M.; Chen, X.; Wang, T.; Tang, Y.; Duan, Z.; Zhao, X.; Zhou, H.; Wang, F. Enhanced Electromechanical Response in PVDF-BNBT Composite Nanofibers for Flexible Sensor Applications. Materials 2022, 15, 1769. [Google Scholar] [CrossRef] [PubMed]
- Craciun, F.; Cordero, F.; Mercadelli, E.; Ilic, N.; Galassi, C.; Baldisserri, C.; Bobic, J.; Stagnaro, P.; Canu, G.; Buscaglia, M.T.; et al. Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology. Compos. Part B Eng. 2023, 263, 110835. [Google Scholar] [CrossRef]
- Bobić, J.D.; Teixeira, G.F.; Grigalaitis, R.; Gyergyek, S.; Petrović, M.M.V.; Zaghete, M.A.; Stojanovic, B.D. PZT-NZF/CF ferrites flexible thick films: Structural, dielectric, ferroelectric and magnetic characterization. J. Adv. Ceram. 2019, 8, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382. [Google Scholar] [CrossRef] [Green Version]
- Mahato, P.K.; Seal, A.; Garain, S.; Sen, S. Effect of fabrication technique on the crystalline phase and electrical properties of PVDF films. Mater. Sci. Poland. 2015, 33, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Makadeva, S.; Berring, J.; Walus, K.; Stoeber, B. Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyedene fluoride) thin films using corona poling. J. Phys. D Appl. Phys. 2013, 46, 285305. [Google Scholar] [CrossRef]
- Lutterotti, L. Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl. Instrum. Meth. Phys. Res. B 2010, 268, 334–340. [Google Scholar] [CrossRef]
- Karapuzha, A.S.; James, N.K.; Khanbareh, H.; Zwaag, S.; Groen, W.A. Structure, dielectric and piezoelectric properties of donor doped PZT ceramics across the phase diagram. Ferroelectrics 2016, 504, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Soo, M.; Mi, X.; Goroshin, S.; Higginsa, A.J.; Bergthorson, J.M. Combustion of particles, agglomerates, and suspensions—A basic thermophysical analysis. Combust. Flame 2018, 192, 384–400. [Google Scholar] [CrossRef]
- Shepelin, N.A.; Glushenkov, A.M.; Lussini, V.C.; Fox, P.J.; Dicinoski, G.W.; Shapter, J.G.; Ellis, A.V. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ. Sci. 2019, 12, 1143–1176. [Google Scholar] [CrossRef]
- Dash, S.; Mohanty, H.S.; Chauhan, R.; Kumar, A.; Thomas, R.; Pradhan, D.K. Ferroelectric ceramic dispersion to enhance the β phase of polymer for improving dielectric and ferroelectric properties of the composites. Polym. Bull. 2021, 78, 5317–5336. [Google Scholar] [CrossRef]
- Seena, M.; Jan, H.; Prasad, V. Dielectric properties of hot-pressed Poly(vinylidene fluoride)/Functionalized carbon nanotube composites. Mater. Chem. Phys. 2022, 285, 126134. [Google Scholar] [CrossRef]
- Huang, Z.X.; Wang, M.M.; Feng, Y.H.; Qu, J.P. β-Phase Formation of Polyvinylidene Fluoride via Hot Pressing under Cyclic Pulsating Pressure. Macromolecules 2020, 53, 8494–8501. [Google Scholar] [CrossRef]
- Muduli, S.P.; Parida, S.; Rout, S.K.; Rajput, S.; Kar, M. Effect of hot press temperature on β-phase, dielectric and ferroelectric properties of solvent casted Poly(vinyledene fluoride) films. Mater. Res. Express 2016, 6, 095306. [Google Scholar] [CrossRef]
- Yang, D.; Chen, Y. β-phase formation of poly(vinylidene fluoride) from the melt induced by quenching. J. Mater. Sci. Lett. 1987, 6, 599−603. [Google Scholar] [CrossRef]
- Mohanty, H.S.; Chauhan, R.; Kumar, A.; Kulriya, P.K.; Thomasd, R.; Pradhan, D.K. Dielectric/ferroelectric properties of ferroelectric ceramic dispersed poly (vinylidene fluoride) with enhanced β-phase formation. Mater. Chem. Phys. 2019, 230, 221–230. [Google Scholar] [CrossRef]
- Balaraman, A.A.; Dutta, S. Inorganic dielectric materials for energy storage applications: A review. J. Phys. D Appl. Phys. 2022, 55, 183002. [Google Scholar] [CrossRef]
- Jain, A.; Prashanth, K.J.; Sharma, A.K.; Jain, A.; Rashmi, P.N. Dielectric and Piezoelectric Properties of PVDF/PZT Composites: A Review, Published online in Wiley Online Library. Polym. Eng. Sci. 2015, 55, 1589–1616. [Google Scholar] [CrossRef]
- Sun, E.; Cao, W. Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci. 2014, 65, 124–210. [Google Scholar] [CrossRef] [Green Version]
- Brunengo, E.; Conzatti, L.; Schizzi, I.; Buscaglia, M.T.; Canu, G.; Curecheriu, L.; Costa, C.; Castellano, M.; Mitoseriu, L.; Stagnaro, P.; et al. Improved dielectric properties of poly(vinylidene fluoride)–BaTiO3 composites by solvent-free processing. J. Appl. Polym. Sci. 2021, 138, e50049. [Google Scholar] [CrossRef]
- Samet, M.; Kallel, A.; Serghei, A. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: Scaling laws and applications. J. Compos. Mater. 2022, 56, 3197–3217. [Google Scholar] [CrossRef]
- Yang, L.; Kong, X.; Cheng, Z.; Zhang, S. Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J. Mater. Chem. A 2019, 7, 8573. [Google Scholar] [CrossRef]
- Mishra, K.K.; Instan, A.A.; Kumari, S.; Scott, J.F.; Katiyar, R.S. Lead palladium titanate: A room temperature nanoscale multiferroic thin film. Sci. Rep. 2020, 10, 2991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, N.H.; Hilton, A.D.; Ricketts, B.W. Optimization of energy storage density in ceramic capacitors. J. Phys. D Appl. Phys. 1996, 29, 253. [Google Scholar] [CrossRef]
- Hou, Y.; Deng, Y.; Wang, Y.; Gao, H. Uniform distribution of low content BaTiO3 nanoparticles in poly(vinylidene fluoride) nanocomposite: Toward high dielectric breakdown strength and energy storage density. RSC Adv. 2015, 5, 72090. [Google Scholar] [CrossRef]
- Chi, Q.; Liu, G.; Zhang, C.; Cui, Y.; Wang, X.; Lei, Q. Microstructure and dielectric properties of BZT-BCT/PVDF nanocomposites. Results Phys. 2018, 8, 391–396. [Google Scholar] [CrossRef]
- Mei, W.; Wei, J.; Ko, Z.Y.; Cheng, Z.Y.; Hu, J. Novel P(VDF-HFP)/BST nanocomposite films with enhanced dielectric properties and optimized energy storage performance. Ceram. Int. 2021, 47, 15561–15567. [Google Scholar] [CrossRef]
- Liu, S.; Xue, S.; Xiu, S.; Shen, B.; Zhai, J. Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density. Sci. Rep. UK 2016, 6, 26198. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Zhou, X.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K.; Zhang, D.; Bowen, C.R. Chaoying Wan, Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, H.; Xu, K.; Wang, B.; Wang, F.; Li, C.; Diao, C.; Huang, H.; Zheng, H. Significantly improved energy storage performance of flexible PVDF-based nanocomposite by loading surface-hydroxylated BaZr0.2Ti0.8O3 nanofibers. Ceram. Int. 2022, 48, 16114–16122. [Google Scholar] [CrossRef]
- Hao, X. A review on the dielectric materials for high energy-storage application. J. Adv. Dielect. 2013, 3, 1330001. [Google Scholar] [CrossRef]
- Jeder, K.; Bouhamed, A.; Nouri, H.; Abdelmoula, N.; Johrmann, N.; Wunderle, B.; Khemakhem, H.; Kanoun, O. Enhancement of the performance of flexible lead-free nanogenerators by doping in BaTiO3 nanoparticles. Energy 2022, 261, 125169. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.; Liu, J. Development of environmental-friendly BZT–BCT/P(VDF–TrFE) composite film for piezoelectric generator. J. Mater. Sci. Mater. Electron. 2018, 29, 17764–17770. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.; Lu, L.; Wang, X.; Li, X.; Chen, X.; Liu, J. Flexible and lead-free piezoelectric nanogenerator as self-poweredsensor based on electrospinning BZT-BCT/P(VDF-TrFE) nanofibers. Sens. Actuat. A-Phys. 2020, 303, 111796. [Google Scholar] [CrossRef]
Samples | %Fα | %Fβ | %Fγ | % FEA |
---|---|---|---|---|
PVDF | 46 | 4 | 50 | 54 |
BZT–PVDF (30–70) | 58 | 42 | / | 42 |
BZT–PVDF (40–60) | 61 | 39 | / | 39 |
BZT–PVDF (50–50) | 55 | 45 | / | 45 |
PZT–PVDF (30–70) | 36 | / | 63 | 63 |
PZT–PVDF (40–60) | 36 | / | 63 | 63 |
PZT–PVDF (50–50) | 47 | 22 | 31 | 53 |
Samples | Jloss (J/cm3) | J (J/cm3) | Jtot (J/cm3) | η (%) |
---|---|---|---|---|
PVDF | 0.001 | 0.06 | 0.061 | 98.4 |
BZT–PVDF (30–70) | 0.0148 | 0.0371 | 0.0519 | 71.5 |
BZT–PVDF (40–60) | 0.0214 | 0.0572 | 0.0786 | 72.7 |
BZT–PVDF (50-50) | 0.0502 | 0.103 | 0.1532 | 67.2 |
PZT–PVDF (30–70) | 0.0078 | 0.0176 | 0.0254 | 69.2 |
PZT–PVDF (40–60) | 0.0147 | 0.0245 | 0.0392 | 62.5 |
PZT–PVDF (50–50) | 0.0465 | 0.0411 | 0.0876 | 46.9 |
Sample | Preparation Method | F (N) | U (V) | Ref. |
---|---|---|---|---|
BCZT/PVDF–HFP | Solution-casting technique | Foot-tapping | 4.55 | [54] |
BZT–BCT/P(VDF–TrFE) | Spin-coating onto substrate | 10 N | 8.11 | [55] |
BZT–BCT/ P(VDF–TrFE) | Spin-coating onto substrate | 6 N | 13.0 | [56] |
BT/PVDF | Dropped onto a substrate | 500 N | 15.7 | [19] |
BZT/PVDF | Hot-pressing method | 500 N | 8.0 | this work [25] |
PZT/PVDF | Coated film on mica substrate | Body motion | 2 | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobić, J.; Ilić, N.; Despotović, Ž.; Džunuzović, A.; Grigalaitis, R.; Stijepović, I.; Stojanović, B.; Vijatović Petrović, M. Properties and Potential Application of Lead-Free (BaZr0.2Ti0.8O3) and Lead-Based (PbZr0.52Ti0.48O3) Flexible Thick Films. Crystals 2023, 13, 1178. https://doi.org/10.3390/cryst13081178
Bobić J, Ilić N, Despotović Ž, Džunuzović A, Grigalaitis R, Stijepović I, Stojanović B, Vijatović Petrović M. Properties and Potential Application of Lead-Free (BaZr0.2Ti0.8O3) and Lead-Based (PbZr0.52Ti0.48O3) Flexible Thick Films. Crystals. 2023; 13(8):1178. https://doi.org/10.3390/cryst13081178
Chicago/Turabian StyleBobić, Jelena, Nikola Ilić, Željko Despotović, Adis Džunuzović, Robertas Grigalaitis, Ivan Stijepović, Biljana Stojanović, and Mirjana Vijatović Petrović. 2023. "Properties and Potential Application of Lead-Free (BaZr0.2Ti0.8O3) and Lead-Based (PbZr0.52Ti0.48O3) Flexible Thick Films" Crystals 13, no. 8: 1178. https://doi.org/10.3390/cryst13081178
APA StyleBobić, J., Ilić, N., Despotović, Ž., Džunuzović, A., Grigalaitis, R., Stijepović, I., Stojanović, B., & Vijatović Petrović, M. (2023). Properties and Potential Application of Lead-Free (BaZr0.2Ti0.8O3) and Lead-Based (PbZr0.52Ti0.48O3) Flexible Thick Films. Crystals, 13(8), 1178. https://doi.org/10.3390/cryst13081178