Synthesis, Crystal Structure, and Antifungal Activity of Quinazolinone Derivatives
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Syntheses of Compounds 2a~2d
2.3. Structure Determination
2.4. Antifungal Activity
3. Results and Discussion
3.1. Chemistry
3.2. Structural Characterization Analysis
3.3. Crystal Structure of 2a
3.4. Structure-Activity Relationship (SAR)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chatterjee, S.; Kuang, Y.; Splivallo, R.; Chatterjee, P.; Karlovsky, P. Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: Fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiol. 2016, 16, 83. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef] [PubMed]
- Marín-Menguiano, M.; Moreno-Sánchez, I.; Barrales, R.R.; Fernández-Álvarez, A.; Ibeas, J.I. N-glycosylation of the protein disulfide isomerase Pdi1 ensures full Ustilago maydis virulence. PLoS Pathog. 2019, 15, e1007687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naito, T. Development of new synthetic reactions for nitrogen-containing compounds and their application. Chem. Pharm. Bull. 2008, 56, 1367–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, W.; Chenghao, T.; Xianghui, J.; Shaoyun, W.; Guohui, Z.; Tizhong, G.; Xiuhong, H. Recent advances on the synthesis and pesticidal activity evaluations of quinazoline derivatives. Chin. J. Pestic. Sci./Nongyaoxue Xuebao 2017, 19, 131–151. [Google Scholar]
- Gupta, T.; Rohilla, A.; Pathak, A.; Akhtar, M.J.; Haider, M.R.; Yar, M.S. Current perspectives on quinazolines with potent biological activities: A review. Synth. Commun. 2018, 48, 1099–1127. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Luo, X.; Chen, Y. Recent research progress and outlook in agricultural chemical discovery based on quinazoline scaffold. Pestic. Biochem. Physiol. 2022, 184, 105122. [Google Scholar] [CrossRef] [PubMed]
- Antipenko, L.; Karpenko, A.; Kovalenko, S.; Katsev, A.; Komarovska-Porokhnyavets, E.; Novikov, V.; Chekotilo, A. Synthesis of new 2-thio-[1, 2, 4] triazolo [1, 5-c] quinazoline derivatives and its antimicrobial activity. Chem. Pharm. Bull. 2009, 57, 580–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latli, B.; Wood, E.; Casida, J.E. Insecticidal Quinazoline Derivatives with (Trifluoromethyl)diazirinyl and Azido Substituents as NADH: Ubiquinone Oxidoreductase Inhibitors and Candidate Photoaffinity Probes. Chem. Res. Toxicol. 1996, 9, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Paneersalvam, P.; Raj, T.; Ishar, M.; Singh, B.; Sharma, V.; Rather, B. Anticonvulsant activity of schiff bases of 3-amino-6,8-dibromo-2-phenyl-quinazolin-4(3H)-ones. Indian J. Pharm. Sci. 2010, 72, 375–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandy, P.; Vishalakshi, M.; Bhat, A. Synthesis and antitubercular activity of Mannich bases of 2-methyl-3H-quinazolin-4-ones. Indian J. Heterocycl. Chem. 2006, 15, 293–294. [Google Scholar]
- Saravanan, G.; Alagarsamy, V.; Prakash, C.R. Synthesis and evaluation of antioxidant activities of novel quinazoline derivatives. Int. J. Pharm. Pharm. Sci. 2010, 2, 83–86. [Google Scholar]
- Hess, H.J.; Cronin, T.H.; Scriabine, A. Antihypertensive 2-amino-4(3H)-quinazolinones. J. Med. Chem. 1968, 11, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Lakhan, R.; Singh, O.P.; Singh, J.R.L. Studies on 4 (3H)-quinazolinonederivatives as anti-malarials. Indian Chem. Soc. 1987, 64, 316–318. [Google Scholar]
- Kumar, K.A.; Jayaroopa, P. Pyrazoles: Synthetic strategies and their pharmaceutical applications-an overview. Int. J. PharmTech Res. 2013, 5, 1473–1486. [Google Scholar]
- Habib, O.M.; Hassan, H.M.; El-Mekabaty, A. Novel quinazolinone derivatives: Synthesis and antimicrobial activity. Med. Chem. Res. 2012, 22, 507–519. [Google Scholar] [CrossRef]
- Bunnett, J.F.; Zahler, R.E. Aromatic Nucleophilic Substitution Reactions. Chem. Rev. 1951, 49, 273–412. [Google Scholar] [CrossRef]
- Torralba, M.; Cano, Μ.; Campo, J.; Heras, J.; Pinilla, E. Crystal structure of 2-[3, 5-bis (4-octyloxyphenyl) pyrazol-1-yl] pyridine, C36H47N3O2. Z. Für Krist.-New Cryst. Struct. 2005, 220, 647–649. [Google Scholar] [CrossRef]
Empirical Formula | C18H12BrCl2N5O | V (Å3) | 1860.6(5) |
---|---|---|---|
Formula weight (g mol−1) | 465.14 | Z | 4 |
Temperature (K) | 296 | Dc (g cm−3) | 1.661 |
Wavelength (Å) | 0.71073 | μ (mm−1) | 2.516 |
Crystal system (mm) | Monoclinic | F (000) | 928 |
Space group | P 21/c | Crystal size (mm) | 0.220 × 0.170 × 0.140 |
a (Å) | 11.3279(18) | Θ range for date collection (°) | 2.257–25.497 |
b (Å) | 15.934(3) | Reflections collected | 13,140 |
c (Å) | 10.6668(17) | Independent reflections | 3468 [R (int) = 0.0328] |
α (°) | 90 | Goodness-of-fit on F2 (S) | 1.115 |
β (°) | 104.910(2) | Final R indices [I > 2σ (I)] | R1 = 0.0324, wR2 = 0.0860 |
γ (°) | 90 | R indices (all data) | R1 = 0.0425, wR2 = 0.0928 |
Bond | Bond Lengths/(Å) | Angle | Bond Angle/(°) | Angle | Bond Angle/(°) |
---|---|---|---|---|---|
C(1)-C(2) | 1.498(4) | C(3)-C(2)-C(7) | 118.0(3) | C(16)-C(15)-C(14) | 118.4(2) |
C(2)-C(3) | 1.381(4) | C(3)-C(2)-C(1) | 121.3(3) | C(16)-C(15)-Cl(2) | 120.1(2) |
C(2)-C(7) | 1.409(4) | C(7)-C(2)-C(1) | 120.6(2) | C(14)-C(15)-Cl(2) | 121.41(19) |
C(3)-C(4) | 1.389(4) | C(2)-C(3)-C(4) | 121.1(3) | C(17)-C(16)-C(15) | 118.6(3) |
C(4)-C(5) | 1.376(4) | C(5)-C(4)-C(3) | 121.5(2) | C(16)-C(17)-C(18) | 118.9(3) |
C(4)-Cl(1) | 1.735(3) | C(5)-C(4)-Cl(1) | 119.1(2) | N(5)-C(18)-C(17) | 123.2(3) |
C(5)-C(6) | 1.389(4) | C(3)-C(4)-Cl(1) | 119.3(2) | C(10)-N(1)-C(7) | 118.6(2) |
C(6)-C(7) | 1.400(4) | C(4)-C(5)-C(6) | 118.2(3) | C(10)-N(2)-C(8) | 120.9(2) |
C(6)-C(8) | 1.464(4) | C(5)-C(6)-C(7) | 121.0(3) | C(10)-N(2)-C(9) | 121.8(2) |
C(7)-N(1) | 1.382(3) | C(5)-C(6)-C(8) | 119.6(2) | C(8)-N(2)-C(9) | 117.1(2) |
C(8)-O(1) | 1.219(3) | C(7)-C(6)-C(8) | 119.4(2) | N(4)-N(3)-C(11) | 112.34(18) |
C(8)-N(2) | 1.393(3) | N(1)-C(7)-C(6) | 121.2(2) | N(4)-N(3)-C(14) | 119.39(19) |
C(9)-N(2) | 1.474(3) | N(1)-C(7)-C(2) | 118.7(2) | C(11)-N(3)-C(14) | 127.90(19) |
C(10)-N(1) | 1.290(3) | C(6)-C(7)-C(2) | 120.1(2) | C(13)-N(4)-N(3) | 103.23(19) |
C(10)-N(2) | 1.385(3) | O(1)-C(8)-N(2) | 120.8(2) | C(14)-N(5)-C(18) | 117.4(2) |
C(10)-C(11) | 1.470(3) | O(1)-C(8)-C(6) | 124.2(2) | ||
C(11)-N(3) | 1.363(3) | N(2)-C(8)-C(6) | 115.0(2) | ||
C(11)-C(12) | 1.372(3) | N(1)-C(10)-N(2) | 124.7(2) | ||
C(12)-C(13) | 1.388(4) | N(1)-C(10)-C(11) | 116.6(2) | ||
C(13)-N(4) | 1.318(3) | N(2)-C(10)-C(11) | 118.7(2) | ||
C(13)-Br(1) | 1.866(2) | N(3)-C(11)-C(12) | 106.3(2) | ||
C(14)-N(5) | 1.321(3) | N(3)-C(11)-C(10) | 119.9(2) | ||
C(14)-C(15) | 1.384(3) | C(12)-C(11)-C(10) | 133.2(2) | ||
C(14)-N(3) | 1.425(3) | C(11)-C(12)-C(13) | 104.4(2) | ||
C(15)-C(16) | 1.378(4) | N(4)-C(13)-C(12) | 113.7(2) | ||
C(15)-Cl(2) | 1.717(3) | N(4)-C(13)-Br(1) | 120.15(18) | ||
C(16)-C(17) | 1.375(4) | C(12)-C(13)-Br(1) | 126.11(19) | ||
C(17)-C(18) | 1.376(5) | N(5)-C(14)-C(15) | 123.5(2) | ||
C(18)-N(5) | 1.333(4) | N(5)-C(14)-N(3) | 115.8(2) | ||
N(3)-N(4) | 1.360(3) | C(15)-C(14)-N(3) | 120.7(2) |
Catalyst | Solvent | Temperature | Time (h) | Yield (%) |
---|---|---|---|---|
CH3-NH2 · HCl | 1,4-Dioxane | 90 °C | 4 | - |
(CH3CH2)3N | 1,4-Dioxane | 90 °C | 4 | 74.63 |
Pyridine | 1,4-Dioxane | 90 °C | 4 | - |
Na2CO3 | 1,4-Dioxane | 90 °C | 4 | 69.75 |
CH3-NH2 · H2O | 1,4-Dioxane | 90 °C | 4 | 87.33 |
CH3-NH2 · H2O | 1,4-Dioxane | 90 °C | 2 | 57.82 |
CH3-NH2 · H2O | 1,4-Dioxane | 90 °C | 3 | 77.06 |
CH3-NH2 · H2O | 1,4-Dioxane | 90 °C | 5 | 86.89 |
CH3-NH2 · H2O | Acetone | Reflux | 4 | 37.56 |
CH3-NH2 · H2O | MeOH | Reflux | 4 | 44.90 |
CH3-NH2 · H2O | THF | Reflux | 4 | 55.38 |
CH3-NH2 · H2O | MeCN | Reflux | 4 | 69.72 |
CH3-NH2 · H2O | DMF | 90 °C | 4 | 20.67 |
CH3-NH2 · H2O | DMF | 100 °C | 4 | 32.48 |
CH3-NH2 · H2O | 1,4-Dioxane | 80 °C | 4 | 79.49 |
CH3-NH2 · H2O | 1,4-Dioxane | Reflux | 4 | 87.28 |
Compd | Conc (mg/L) | Inhibition Rate (%) ± SD | ||||||
---|---|---|---|---|---|---|---|---|
R. S. | P. P. | F. V. | S. S. | F. N. | C. F. | C. A. | ||
2a | 150 | 25.11 ± 0.12 | 22.53 ± 0.46 | 7.91 ± 1.20 | 18.89 ± 0.65 | 21.66 ± 0.98 | 17.22 ± 1.08 | 16.23 ± 1.73 |
300 | 55.00 ± 2.12 | 46.42 ± 1.77 | 21.59 ± 1.56 | 41.82 ± 0.90 | 38.90 ± 1.64 | 26.22 ± 2.07 | 35.32 ± 1.45 | |
2b | 150 | 29.73 ± 0.20 | 13.73 ± 0.65 | 9.44 ± 0.40 | 11.20 ± 1.48 | 11.58 ± 0.36 | 11.00 ± 1.47 | 11.30 ± 0.37 |
300 | 59.60 ± 1.00 | 27.55 ± 0.87 | 18.72 ± 0.76 | 20.00 ± 0.93 | 25.96 ± 0.75 | 21.02 ± 1.21 | 26.88 ± 0.65 | |
2c | 150 | 10.74 ± 1.35 | 18.66 ± 0.76 | 18.62 ± 1.04 | 7.52 ± 0.91 | 35.37 ± 1.55 | 31.92 ± 1.05 | 14.29 ± 1.47 |
300 | 29.25 ± 0.55 | 37.50 ± 0.60 | 41.82 ± 1.20 | 16.22 ± 1.49 | 62.42 ± 1.46 | 54.60 ± 0.30 | 34.68 ± 1.36 | |
2d | 150 | 11.72 ± 2.02 | 18.68 ± 1.47 | 21.23 ± 0.88 | 8.66 ± 2.10 | 32.24 ± 0.86 | 36.02 ± 1.08 | 7.24 ± 2.05 |
300 | 30.6 ± 1.99 | 39.02 ± 1.35 | 40.60 ± 2.20 | 17.28 ± 1.00 | 57.88 ± 1.24 | 55.41 ± 1.52 | 20.39 ± 0.56 | |
TCZ | 150 | 74.24 ± 2.50 | 44.72 ± 0.56 | 40.20 ± 2.41 | 40.02 ± 0.38 | 55.80 ± 1.10 | 78.43 ± 2.00 | 65.70 ± 0.58 |
300 | 97.00 ± 1.56 | 83.02 ± 0.76 | 67.58 ± 1.30 | 66.28 ± 1.02 | 79.03 ± 1.35 | 98.01 ± 0.47 | 80.20 ± 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, R.; Huang, C.; Wang, J.; Zhong, Y.; Fang, Q.; Xiao, S.; Nie, X.; Chen, S.; Peng, D. Synthesis, Crystal Structure, and Antifungal Activity of Quinazolinone Derivatives. Crystals 2023, 13, 1254. https://doi.org/10.3390/cryst13081254
Zeng R, Huang C, Wang J, Zhong Y, Fang Q, Xiao S, Nie X, Chen S, Peng D. Synthesis, Crystal Structure, and Antifungal Activity of Quinazolinone Derivatives. Crystals. 2023; 13(8):1254. https://doi.org/10.3390/cryst13081254
Chicago/Turabian StyleZeng, Rong, Cong Huang, Jie Wang, Yuan Zhong, Qingwen Fang, Shuzhen Xiao, Xuliang Nie, Shangxing Chen, and Dayong Peng. 2023. "Synthesis, Crystal Structure, and Antifungal Activity of Quinazolinone Derivatives" Crystals 13, no. 8: 1254. https://doi.org/10.3390/cryst13081254
APA StyleZeng, R., Huang, C., Wang, J., Zhong, Y., Fang, Q., Xiao, S., Nie, X., Chen, S., & Peng, D. (2023). Synthesis, Crystal Structure, and Antifungal Activity of Quinazolinone Derivatives. Crystals, 13(8), 1254. https://doi.org/10.3390/cryst13081254