Flexible Optically Rewritable Electronic Paper
Abstract
:1. Introduction
2. Methodology of Uniform Spacer Distribution
- (a)
- Relative compression of the spacers caused by external pressure on the first of the plates must not exceed the maximum value;
- (b)
- Maximum deflection of the top plate between the spacers must be kept within predetermined limits
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quiroga, J.A.; Canga, I.; Alonso, J.; Crespo, D. Reversible photoalignment of Liquid crystals: A path toward the creation of Rewritable Lenses. Sci. Rep. 2020, 10, 5739. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, J.; Wang, J.; Li, X.; Zeng, H. Micro-patterned photoalignment of CsPbBr3 nanowires with liquid crystal molecule composite film for polarized emission. Nanoscale 2021, 13, 14980–14986. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Yao, L.S. Effect of azimuthal anchoring energy on rewriting speed of optical rewritable e-paper. Liq. Cryst. 2021, 48, 915–921. [Google Scholar] [CrossRef]
- Fuh, A.Y.G.; Lin, T.H.; Jau, H.C.; Hung, S.Y.; Fuh, H.R. Optically Rewritable Reflective Liquid Crystal Display. SID Symposium Digest of Technical Papers; Blackwell Publishing Ltd.: Oxford, UK, 2006. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Liu, Y.; Shang, J.; Liu, H.; Liu, H.; Gong, X.; Chigrinov, V.; Kowk, H.S. A flexible optically re-writable color liquid crystal display. Appl. Phys. Lett. 2018, 112, 131902. [Google Scholar] [CrossRef]
- Sivaranjini, B.; Mohana, K.; Esakkimuthu, S.; Ganesh, V.; Umadevi, S. Photo-responsive azo-functionalised flexible polymer substrate for liquid crystal alignment. Liq. Cryst. 2020, 47, 1354–1365. [Google Scholar] [CrossRef]
- Weng, S.-C.; Fuh, A.Y.-G.; Tang, F.-C.; Cheng, K.T. Effect of surface condition on liquid crystal photoalignment by light-induced azo dye adsorption phenomena. Liq. Cryst. 2016, 2016. 43, 1221–1229. [Google Scholar] [CrossRef]
- Chigrinov, V.G.; Kudreyko, A.A. Tunable optical properties for ORW e-paper. Liq. Cryst. 2021, 48, 1073–1077. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Li, T.; Huang, S.; Huang, H.; Wen, S. Stretchable and foldable waveplate based on liquid crystal polymer. Appl. Phys. Lett. 2020, 28, 117. [Google Scholar] [CrossRef]
- Kudreyko, A.; Chigrinov, V. Structural and Optical Characteristics of Flexible Optically Rewritable Electronic Paper. Crystals 2022, 12, 1149. [Google Scholar] [CrossRef]
- He, Y.; Li, J.; Li, J.; Zhu, C.; Guo, J. Photoinduced dual-mode luminescent patterns in dicyanostilbene-based liquid crystal polymer films for anticounterfeiting application. ACS Appl. Polym. Mater. 2019, 1, 746–754. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Drzaic, P.; Yeo, J.S.; Koch, T. A critical review of the present and future prospects for electronic paper. J. Soc. Inf. Display 2011, 19, 129–156. [Google Scholar] [CrossRef]
- Sivaranjini, B.; Mangaiyarkarasi, R.; Ganesh, V.; Umadevi, S. Vertical alignment of liquid crystals over a functionalized flexible substrate. Sci. Rep. 2018, 8, 8891. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, W.; Lee, J.H.; Kim, Y.M.; Yun, M.H. Understanding the Relationship between User’s Subjective Feeling and the Degree of Side Curvature in Smartphone. Appl. Sci. 2020, 10, 3320. [Google Scholar] [CrossRef]
- Sivaranjini, B.; Ganesh, V.; Umadevi, S. Bent-core liquid crystal-functionalised flexible polymer substrates for liquid crystal alignment. Liq. Cryst. 2020, 47, 838–850. [Google Scholar] [CrossRef]
- Display Industry Awards: SID; 2018 [Cited 2023]. Available online: https://www.sid.org/Awards/Display-Industry-Awards (accessed on 18 August 2023).
- Khandelwal, H.; van Heeswijk, E.P.; Schenning, A.P.; Debije, M.G. Paintable temperature-responsive cholesteric liquid crystal reflectors encapsulated on a single flexible polymer substrate. J. Mater. Chem. C 2019, 7, 7395–7398. [Google Scholar] [CrossRef]
- Ishinabe, T.; Fujikake, H. Optical design of flexible liquid crystal displays. High Quality Liquid Crystal Displays and Smart Devices; Institution of Engineering and Technology: London, UK, 2019; pp. 207–222. [Google Scholar] [CrossRef]
- Maruyama, N.; Kumashiro, Y.; Yamamoto, K. Development of cell gap spacer in LCD for ink-jet printing. Proceedings of 2008 2nd Electronics System-Integration Technology Conference, Greenwich, UK, 1–4 September 2008; IEEE: New York, NY, USA, 2008; pp. 985–988. [Google Scholar] [CrossRef]
- Yang, B.-R. E-Paper Displays; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Lagerwall, S.T.; Muravski, A.A.; Yakovenko, S.Y.; Konovalov, V.A.; Minko, A.A.; Tsarev, V.P. Pressure-Insensitive Liquid Crystal Cell. U.S. Patent no. US6184967B1, 6 February 2001. [Google Scholar]
- Kudreyko, A.; Chigrinov, V. Optimization of image writer modes for optically rewritable electronic paper. Liq. Cryst. 2022, 49, 436–441. [Google Scholar] [CrossRef]
- Sonehara, A.; Maruyama, K.; Ono, Y.; Sugizaki, A.; Eguchi, T.; Suzuki, Y.; Ito, T.; Kumano, A.; Takahashi, T. Continuous Coating of Photo-Alignment Layer on a Flexible Color Filter for LCDs Using a Roll-to-Roll Manufacturing Process. SID Symp. Dig. Tech. Pap. 2006, 37, 1579–1582. [Google Scholar] [CrossRef]
- Gregg, A.; York, L.; Strnad, M. Roll-to-Roll Manufacturing of Flexible Displays. In Flexible Flat Panel Displays; John Wiley & Sons: The Atrium, Southern Gate, UK, 2005; pp. 409–445. [Google Scholar] [CrossRef]
- He, G.; Sun, P.; Zhang, S.; Liu, X.; Shen, D.; Zheng, Z.G. Tunable holography with independent transflective information channels enabled by interleaved soft materials. Opt. Mater. 2023, 142, 113972. [Google Scholar] [CrossRef]
- Oemrawsingh, S.; Van Houwelingen, J.; Eliel, E.; Woerdman, J.; Verstegen, E.; Kloosterboer, J. Production and characterization of spiral phase plates for optical wavelengths. Appl. Optics. 2004, 43, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Folwill, Y.; Zeitouny, Z.; Lall, J.; Zappe, H. A practical guide to versatile photoalignment of azobenzenes. Liq. Cryst. 2021, 48, 862–872. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chigrinov, V.; Kudreyko, A.; Sun, J. Flexible Optically Rewritable Electronic Paper. Crystals 2023, 13, 1283. https://doi.org/10.3390/cryst13081283
Chigrinov V, Kudreyko A, Sun J. Flexible Optically Rewritable Electronic Paper. Crystals. 2023; 13(8):1283. https://doi.org/10.3390/cryst13081283
Chicago/Turabian StyleChigrinov, Vladimir, Aleksey Kudreyko, and Jiatong Sun. 2023. "Flexible Optically Rewritable Electronic Paper" Crystals 13, no. 8: 1283. https://doi.org/10.3390/cryst13081283
APA StyleChigrinov, V., Kudreyko, A., & Sun, J. (2023). Flexible Optically Rewritable Electronic Paper. Crystals, 13(8), 1283. https://doi.org/10.3390/cryst13081283