Absorption of Light in Vertical III-V Semiconductor Nanowires for Solar Cell and Photodetector Applications
Abstract
:1. Introduction
2. Solar Cells and Photodetectors
2.1. Bandgap of Semiconductors for Absorption Applications
2.2. Absorption of Light for Solar Cells and Photodetectors
3. Bandgap and Refractive Index of III-Vs
3.1. Bandgap
3.2. Refractive Index
4. III-V Nanowires
5. Tuning of Absorption in Vertical III-V Nanowires
5.1. Basic Nanowire Array
5.1.1. Insertion Reflection Loss
5.1.2. Diameter-Dependent Absorption
5.1.3. Photonic Crystal Modes in Nanowire Arrays
5.1.4. Absorption in Single Nanowire vs. Nanowire Array
5.1.5. Dependence on the Incidence Angle
5.2. Tapered Nanowires
5.3. Aperiodic Arrays
5.4. Tandem Nanowire-on-Silicon Solar Cells
5.5. Effect of Imperfections in Nanowire Arrays
5.6. Bragg Reflectors in Nanowires
5.7. Examples of Realized III-V Nanowires Solar Cells and Photodetectors
6. Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band Parameters for III–V Compound Semiconductors and Their Alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef]
- Anttu, N.; Xu, H.Q. Efficient Light Management in Vertical Nanowire Arrays for Photovoltaics. Opt. Express 2013, 21, A558–A575. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tan, H.H.; Jagadish, C.; Fu, L. III–V Semiconductor Single Nanowire Solar Cells: A Review. Adv. Mater. Technol. 2018, 3, 1800005. [Google Scholar] [CrossRef]
- VJ, L.; Oh, J.; Nayak, A.P.; Katzenmeyer, A.M.; Gilchrist, K.H.; Grego, S.; Kobayashi, N.P.; Wang, S.-Y.; Talin, A.A.; Dhar, N.K.; et al. A Perspective on Nanowire Photodetectors: Current Status, Future Challenges, and Opportunities. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1002–1032. [Google Scholar] [CrossRef]
- Otnes, G.; Borgström, M.T. Towards High Efficiency Nanowire Solar Cells. Nano Today 2017, 12, 31–45. [Google Scholar] [CrossRef]
- LaPierre, R.R.; Robson, M.; Azizur-Rahman, K.M.; Kuyanov, P. A Review of III–V Nanowire Infrared Photodetectors and Sensors. J. Phys. Appl. Phys. 2017, 50, 123001. [Google Scholar] [CrossRef]
- LaPierre, R.R.; Chia, A.C.E.; Gibson, S.J.; Haapamaki, C.M.; Boulanger, J.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N.; et al. III–V Nanowire Photovoltaics: Review of Design for High Efficiency. Phys. Status Solidi RRL—Rapid Res. Lett. 2013, 7, 815–830. [Google Scholar] [CrossRef]
- Goktas, N.I.; Wilson, P.; Ghukasyan, A.; Wagner, D.; McNamee, S.; LaPierre, R.R. Nanowires for Energy. Appl. Phys. Rev. 2018, 5, 041305. [Google Scholar] [CrossRef]
- Mukai, T. Recent Progress in Group-III Nitride Light-Emitting Diodes. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 264–270. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H. Nanowires for High-Efficiency, Low-Cost Solar Photovoltaics. Crystals 2019, 9, 87. [Google Scholar] [CrossRef]
- Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M.H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B.; et al. InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit. Science 2013, 339, 1057–1060. [Google Scholar] [CrossRef]
- UN Environment Programme. REN21. Renewables 2022 Global Status Report. (Paris: REN21 Secretariat); UN Environment Programme: Gigiri Nairobi, Kenya, 2022; ISBN 978-3-948393-04-5. [Google Scholar]
- Downs, C.; Vandervelde, T.E. Progress in Infrared Photodetectors Since 2000. Sensors 2013, 13, 5054–5098. [Google Scholar] [CrossRef]
- Sze, S.M.; Li, Y.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 978-1-119-61800-3. [Google Scholar]
- Nelson, J. The Physics of Solar Cells, 1st ed.; ICP: London, UK; River Edge: Singapore, 2003; ISBN 978-1-86094-349-2. [Google Scholar]
- Alhalaili, B.; Peksu, E.; Mcphillips, L.N.; Ombaba, M.M.; Islam, M.S.; Karaagac, H. 4 - Nanowires for Photodetection. In Photodetectors, 2nd ed.; Nabet, B., Ed.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawston, UK, 2023; pp. 139–197. ISBN 978-0-08-102795-0. [Google Scholar]
- Trojnar, A.H.; Valdivia, C.E.; LaPierre, R.R.; Hinzer, K.; Krich, J.J. Optimizations of GaAs Nanowire Solar Cells. IEEE J. Photovolt. 2016, 6, 1494–1501. [Google Scholar] [CrossRef]
- Anttu, N. Physics and Design for 20% and 25% Efficiency Nanowire Array Solar Cells. Nanotechnology 2018, 30, 074002. [Google Scholar] [CrossRef] [PubMed]
- Maryasin, V.; Bucci, D.; Rafhay, Q.; Panicco, F.; Michallon, J.; Kaminski-Cachopo, A. Technological Guidelines for the Design of Tandem III-V Nanowire on Si Solar Cells from Opto-Electrical Simulations. Sol. Energy Mater. Sol. Cells 2017, 172, 314–323. [Google Scholar] [CrossRef]
- ASTM G173-03(2020); Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM International: West Conshohocken, PA, USA, 2020.
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of P-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar Cell Efficiency Tables (Version 62). Prog. Photovolt. Res. Appl. 2023, 31, 651–663. [Google Scholar] [CrossRef]
- Svensson, J.; Anttu, N.; Vainorius, N.; Borg, B.M.; Wernersson, L.-E. Diameter-Dependent Photocurrent in InAsSb Nanowire Infrared Photodetectors. Nano Lett. 2013, 13, 1380–1385. [Google Scholar] [CrossRef]
- Anttu, N.; Mäntynen, H.; Sorokina, A.; Turunen, J.; Sadi, T.; Lipsanen, H. Applied Electromagnetic Optics Simulations for Nanophotonics. J. Appl. Phys. 2021, 129, 131102. [Google Scholar] [CrossRef]
- Anttu, N. Geometrical Optics, Electrostatics, and Nanophotonic Resonances in Absorbing Nanowire Arrays. Opt. Lett. 2013, 38, 730–732. [Google Scholar] [CrossRef]
- Borghesi, A.; Guizzetti, G. Gallium Phosphide (GaP). In Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic Press: Boston, MA, USA, 1985; pp. 445–464. ISBN 978-0-08-054721-3. [Google Scholar]
- Palik, E.D. Gallium Arsenide (GaAs). In Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic Press: Boston, MA, USA, 1985; pp. 429–443. ISBN 978-0-08-054721-3. [Google Scholar]
- Glembocki, O.J.; Piller, H. Indium Phosphide (InP). In Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic Press: Boston, MA, USA, 1997; pp. 503–516. ISBN 978-0-12-544415-6. [Google Scholar]
- Pauk, E.D.; Holm, R.T. Indium Arsenide (InAs). In Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic Press: Boston, MA, USA, 1997; pp. 479–489. ISBN 978-0-12-544415-6. [Google Scholar]
- Raj, V.; Haggren, T.; Wong, W.W.; Tan, H.H.; Jagadish, C. Topical Review: Pathways toward Cost-Effective Single-Junction III–V Solar Cells. J. Phys. Appl. Phys. 2021, 55, 143002. [Google Scholar] [CrossRef]
- Barrigón, E.; Hultin, O.; Lindgren, D.; Yadegari, F.; Magnusson, M.H.; Samuelson, L.; Johansson, L.I.M.; Björk, M.T. GaAs Nanowire Pn-Junctions Produced by Low-Cost and High-Throughput Aerotaxy. Nano Lett. 2018, 18, 1088–1092. [Google Scholar] [CrossRef]
- Chuang, L.C.; Moewe, M.; Chase, C.; Kobayashi, N.P.; Chang-Hasnain, C.; Crankshaw, S. Critical Diameter for III-V Nanowires Grown on Lattice-Mismatched Substrates. Appl. Phys. Lett. 2007, 90, 043115. [Google Scholar] [CrossRef]
- Caroff, P.; Messing, M.E.; Borg, B.M.; Dick, K.A.; Deppert, K.; Wernersson, L.-E. InSb Heterostructure Nanowires: MOVPE Growth under Extreme Lattice Mismatch. Nanotechnology 2009, 20, 495606. [Google Scholar] [CrossRef] [PubMed]
- Barrigón, E.; Heurlin, M.; Bi, Z.; Monemar, B.; Samuelson, L. Synthesis and Applications of III–V Nanowires. Chem. Rev. 2019, 119, 9170–9220. [Google Scholar] [CrossRef] [PubMed]
- Loitsch, B.; Rudolph, D.; Morkötter, S.; Döblinger, M.; Grimaldi, G.; Hanschke, L.; Matich, S.; Parzinger, E.; Wurstbauer, U.; Abstreiter, G.; et al. Tunable Quantum Confinement in Ultrathin, Optically Active Semiconductor Nanowires via Reverse-Reaction Growth. Adv. Mater. 2015, 27, 2195–2202. [Google Scholar] [CrossRef]
- Shokhovets, S.; Gobsch, G.; Ambacher, O. Excitonic Contribution to the Optical Absorption in Zinc-Blende III-V Semiconductors. Phys. Rev. B 2006, 74, 155209. [Google Scholar] [CrossRef]
- Erhard, N.; Zenger, S.; Morkötter, S.; Rudolph, D.; Weiss, M.; Krenner, H.J.; Karl, H.; Abstreiter, G.; Finley, J.J.; Koblmüller, G.; et al. Ultrafast Photodetection in the Quantum Wells of Single AlGaAs/GaAs-Based Nanowires. Nano Lett. 2015, 15, 6869–6874. [Google Scholar] [CrossRef]
- Warburton, R.J.; Gauer, C.; Wixforth, A.; Kotthaus, J.P.; Brar, B.; Kroemer, H. Intersubband Resonances in InAs/AlSb Quantum Wells: Selection Rules, Matrix Elements, and the Depolarization Field. Phys. Rev. B 1996, 53, 7903–7910. [Google Scholar] [CrossRef]
- Anttu, N.; Abrand, A.; Asoli, D.; Heurlin, M.; Åberg, I.; Samuelson, L.; Borgström, M. Absorption of Light in InP Nanowire Arrays. Nano Res. 2014, 7, 816–823. [Google Scholar] [CrossRef]
- Hu, S.; Chi, C.-Y.; Fountaine, K.T.; Yao, M.; Atwater, H.A.; Daniel Dapkus, P.; S. Lewis, N.; Zhou, C. Optical, Electrical, and Solar Energy-Conversion Properties of Gallium Arsenide Nanowire -Array Photoanodes. Energy Environ. Sci. 2013, 6, 1879–1890. [Google Scholar] [CrossRef]
- Hu, L.; Chen, G. Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications. Nano Lett. 2007, 7, 3249–3252. [Google Scholar] [CrossRef]
- Green, M.A. Self-Consistent Optical Parameters of Intrinsic Silicon at 300K Including Temperature Coefficients. Sol. Energy Mater. Sol. Cells 2008, 92, 1305–1310. [Google Scholar] [CrossRef]
- Mariani, G.; Zhou, Z.; Scofield, A.; Huffaker, D.L. Direct-Bandgap Epitaxial Core–Multishell Nanopillar Photovoltaics Featuring Subwavelength Optical Concentrators. Nano Lett. 2013, 13, 1632–1637. [Google Scholar] [CrossRef] [PubMed]
- Dagytė, V.; Anttu, N. Modal Analysis of Resonant and Non-Resonant Optical Response in Semiconductor Nanowire Arrays. Nanotechnology 2018, 30, 025710. [Google Scholar] [CrossRef] [PubMed]
- Kupec, J.; Witzigmann, B. Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells. Opt. Express 2009, 17, 10399–10410. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wen, L.; Li, X.; Zhao, Z.; Wang, Y. Analysis of Optical Absorption in GaAs Nanowire Arrays. Nanoscale Res. Lett. 2011, 6, 617. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, Z.; Li, X.; Shen, Y.; Guo, H.; Wang, Y. Theoretical Analysis and Modeling of Light Trapping in High Efficicency GaAs Nanowire Array Solar Cells. Appl. Phys. Lett. 2011, 99, 143116. [Google Scholar] [CrossRef]
- Hu, Y.; LaPierre, R.R.; Li, M.; Chen, K.; He, J.-J. Optical Characteristics of GaAs Nanowire Solar Cells. J. Appl. Phys. 2012, 112, 104311. [Google Scholar] [CrossRef]
- Huang, N.; Lin, C.; Povinelli, M.L. Broadband Absorption of Semiconductor Nanowire Arrays for Photovoltaic Applications. J. Opt. 2012, 14, 024004. [Google Scholar] [CrossRef]
- Fountaine, K.T.; Cheng, W.-H.; Bukowsky, C.R.; Atwater, H.A. Near-Unity Unselective Absorption in Sparse InP Nanowire Arrays. ACS Photonics 2016, 3, 1826–1832. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory; Springer: Boston, MA, USA, 1984; ISBN 978-0-412-24250-2. [Google Scholar]
- Traviss, D.J.; Schmidt, M.K.; Aizpurua, J.; Muskens, O.L. Antenna Resonances in Low Aspect Ratio Semiconductor Nanowires. Opt. Express 2015, 23, 22771–22787. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Leu, P.W. Tunable and Selective Resonant Absorption in Vertical Nanowires. Opt. Lett. 2012, 37, 3756–3758. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Wober, M.; Steinvurzel, P.; Schonbrun, E.; Dan, Y.; Ellenbogen, T.; Crozier, K.B. Multicolored Vertical Silicon Nanowires. Nano Lett. 2011, 11, 1851–1856. [Google Scholar] [CrossRef]
- Anttu, N. Absorption of Light in a Single Vertical Nanowire and a Nanowire Array. Nanotechnology 2019, 30, 104004. [Google Scholar] [CrossRef]
- Anttu, N.; Namazi, K.L.; Wu, P.M.; Yang, P.; Xu, H.; Xu, H.Q.; Håkanson, U. Drastically Increased Absorption in Vertical Semiconductor Nanowire Arrays: A Non-Absorbing Dielectric Shell Makes the Difference. Nano Res. 2012, 5, 863–874. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008; ISBN 978-0-691-12456-8. [Google Scholar]
- Anttu, N.; Mäntynen, H.; Sadi, T.; Matikainen, A.; Turunen, J.; Lipsanen, H. Comparison of Absorption Simulation in Semiconductor Nanowire and Nanocone Arrays with the Fourier Modal Method, the Finite Element Method, and the Finite-Difference Time-Domain Method. Nano Express 2020, 1, 030034. [Google Scholar] [CrossRef]
- Ghahfarokhi, O.M.; Anttu, N.; Samuelson, L.; Åberg, I. Performance of GaAs Nanowire Array Solar Cells for Varying Incidence Angles. IEEE J. Photovolt. 2016, 6, 1502–1508. [Google Scholar] [CrossRef]
- Abujetas, D.R.; Paniagua-Domínguez, R.; Sánchez-Gil, J.A. Unraveling the Janus Role of Mie Resonances and Leaky/Guided Modes in Semiconductor Nanowire Absorption for Enhanced Light Harvesting. ACS Photonics 2015, 2, 921–929. [Google Scholar] [CrossRef]
- Fan, Z.; Kapadia, R.; Leu, P.W.; Zhang, X.; Chueh, Y.-L.; Takei, K.; Yu, K.; Jamshidi, A.; Rathore, A.A.; Ruebusch, D.J.; et al. Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption. Nano Lett. 2010, 10, 3823–3827. [Google Scholar] [CrossRef]
- Cho, Y.; Gwon, M.; Park, H.-H.; Kim, J.; Kim, D.-W. Wafer-Scale Nanoconical Frustum Array Crystalline Silicon Solar Cells: Promising Candidates for Ultrathin Device Applications. Nanoscale 2014, 6, 9568–9573. [Google Scholar] [CrossRef] [PubMed]
- Mavrokefalos, A.; Han, S.E.; Yerci, S.; Branham, M.S.; Chen, G. Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications. Nano Lett. 2012, 12, 2792–2796. [Google Scholar] [CrossRef] [PubMed]
- Diedenhofen, S.L.; Janssen, O.T.A.; Grzela, G.; Bakkers, E.P.A.M.; Gómez Rivas, J. Strong Geometrical Dependence of the Absorption of Light in Arrays of Semiconductor Nanowires. ACS Nano 2011, 5, 2316–2323. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Stevens, E.; Leu, P.W. Strong Broadband Absorption in GaAs Nanocone and Nanowire Arrays for Solar Cells. Opt. Express 2014, 22, A386–A395. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.P.; LaPierre, R.R. Simulation of Optical Absorption in Conical Nanowires. Opt. Express 2021, 29, 9544–9552. [Google Scholar] [CrossRef] [PubMed]
- Tekcan, B.; van Kasteren, B.; Grayli, S.V.; Shen, D.; Tam, M.C.; Ban, D.; Wasilewski, Z.; Tsen, A.W.; Reimer, M.E. Semiconductor Nanowire Metamaterial for Broadband Near-Unity Absorption. Sci. Rep. 2022, 12, 9663. [Google Scholar] [CrossRef]
- Wu, D.; Tang, X.; Wang, K.; Li, X. An Analytic Approach for Optimal Geometrical Design of GaAs Nanowires for Maximal Light Harvesting in Photovoltaic Cells. Sci. Rep. 2017, 7, 46504. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Gong, L.; Ai, L.; Wei, W.; Zhang, X.; Ren, X. Enhanced Photovoltaic Performance of Nanowire Array Solar Cells with Multiple Diameters. Opt. Express 2018, 26, A974–A983. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Povinelli, M.L. Optimal Design of Aperiodic, Vertical Silicon Nanowire Structures for Photovoltaics. Opt. Express 2011, 19, A1148–A1154. [Google Scholar] [CrossRef]
- Sturmberg, B.C.P.; Dossou, K.B.; Botten, L.C.; Asatryan, A.A.; Poulton, C.G.; McPhedran, R.C.; Sterke, C.M. de Absorption Enhancing Proximity Effects in Aperiodic Nanowire Arrays. Opt. Express 2013, 21, A964–A969. [Google Scholar] [CrossRef]
- Benali, A.; Michallon, J.; Regreny, P.; Drouard, E.; Rojo, P.; Chauvin, N.; Bucci, D.; Fave, A.; Kaminski-Cachopo, A.; Gendry, M. Optical Simulation of Multijunction Solar Cells Based on III-V Nanowires on Silicon. Energy Procedia 2014, 60, 109–115. [Google Scholar] [CrossRef]
- Alcer, D.; Hrachowina, L.; Hessman, D.; Borgström, M.T. Processing and Characterization of Large Area InP Nanowire Photovoltaic Devices. Nanotechnology 2023, 34, 295402. [Google Scholar] [CrossRef] [PubMed]
- Anttu, N. Absorption of Light in Finite Semiconductor Nanowire Arrays and the Effect of Missing Nanowires. Symmetry 2021, 13, 1654. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.; Wang, F.; Xu, L.; Gao, Q.; Alabadla, A.; Peng, K.; Vora, K.; Hattori, H.T.; Hoe Tan, H.; et al. Investigation of Light–Matter Interaction in Single Vertical Nanowires in Ordered Nanowire Arrays. Nanoscale 2022, 14, 3527–3536. [Google Scholar] [CrossRef] [PubMed]
- Grain, N.; Kim, S. Insight into Refractive Index Modulation as Route to Enhanced Light Coupling in Semiconductor Nanowires. Opt. Lett. 2023, 48, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics, 2nd ed.; John Wiley and Sons Ltd.: Princeton, NJ, USA, 2007. [Google Scholar]
- Wilson, D.P.; LaPierre, R.R. Corrugated Nanowires as Distributed Bragg Reflectors. Nano Express 2022, 3, 035005. [Google Scholar] [CrossRef]
- Aghaeipour, M.; Pettersson, H. Enhanced Broadband Absorption in Nanowire Arrays with Integrated Bragg Reflectors. Nanophotonics 2018, 7, 819–825. [Google Scholar] [CrossRef]
- Czaban, J.A.; Thompson, D.A.; LaPierre, R.R. GaAs Core−Shell Nanowires for Photovoltaic Applications. Nano Lett. 2009, 9, 148–154. [Google Scholar] [CrossRef]
- Colombo, C.; Heiβ, M.; Grätzel, M.; Fontcuberta i Morral, A. Gallium Arsenide P-i-n Radial Structures for Photovoltaic Applications. Appl. Phys. Lett. 2009, 94, 173108. [Google Scholar] [CrossRef]
- Goto, H.; Nosaki, K.; Tomioka, K.; Hara, S.; Hiruma, K.; Motohisa, J.; Fukui, T. Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy. Appl. Phys. Express 2009, 2, 035004. [Google Scholar] [CrossRef]
- Krogstrup, P.; Jørgensen, H.I.; Heiss, M.; Demichel, O.; Holm, J.V.; Aagesen, M.; Nygard, J.; Fontcuberta i Morral, A. Single-Nanowire Solar Cells beyond the Shockley–Queisser Limit. Nat. Photonics 2013, 7, 306–310. [Google Scholar] [CrossRef]
- Mariani, G.; Scofield, A.C.; Hung, C.-H.; Huffaker, D.L. GaAs Nanopillar-Array Solar Cells Employing in Situ Surface Passivation. Nat. Commun. 2013, 4, 1497. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Huang, N.; Cong, S.; Chi, C.-Y.; Seyedi, M.A.; Lin, Y.-T.; Cao, Y.; Povinelli, M.L.; Dapkus, P.D.; Zhou, C. GaAs Nanowire Array Solar Cells with Axial p–i–n Junctions. Nano Lett. 2014, 14, 3293–3303. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, J.; Plissard, S.R.; Cavalli, A.; Vu, T.T.T.; van Veldhoven, R.P.J.; Gao, L.; Trainor, M.; Verheijen, M.A.; Haverkort, J.E.M.; et al. Efficiency Enhancement of InP Nanowire Solar Cells by Surface Cleaning. Nano Lett. 2013, 13, 4113–4117. [Google Scholar] [CrossRef]
- Yao, M.; Cong, S.; Arab, S.; Huang, N.; Povinelli, M.L.; Cronin, S.B.; Dapkus, P.D.; Zhou, C. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition. Nano Lett. 2015, 15, 7217–7224. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.S.; Tran, T.-T.D.; Bhattacharya, I.; Ng, K.W.; Sun, H.; Chang-Hasnain, C. Illumination Angle Insensitive Single Indium Phosphide Tapered Nanopillar Solar Cell. Nano Lett. 2015, 15, 4961–4967. [Google Scholar] [CrossRef] [PubMed]
- Åberg, I.; Vescovi, G.; Asoli, D.; Naseem, U.; Gilboy, J.P.; Sundvall, C.; Dahlgren, A.; Svensson, K.E.; Anttu, N.; Björk, M.T.; et al. A GaAs Nanowire Array Solar Cell with 15.3% Efficiency at 1 Sun. IEEE J. Photovolt. 2016, 6, 185–190. [Google Scholar] [CrossRef]
- van Dam, D.; van Hoof, N.J.J.; Cui, Y.; van Veldhoven, P.J.; Bakkers, E.P.A.M.; Gómez Rivas, J.; Haverkort, J.E.M. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium–Tin–Oxide Mie Scatterers. ACS Nano 2016, 10, 11414–11419. [Google Scholar] [CrossRef] [PubMed]
- Sanatinia, R.; Berrier, A.; Dhaka, V.; Perros, A.P.; Huhtio, T.; Lipsanen, H.; Anand, S. Wafer-Scale Self-Organized InP Nanopillars with Controlled Orientation for Photovoltaic Devices. Nanotechnology 2015, 26, 415304. [Google Scholar] [CrossRef]
- Otnes, G.; Barrigón, E.; Sundvall, C.; Svensson, K.E.; Heurlin, M.; Siefer, G.; Samuelson, L.; Åberg, I.; Borgström, M.T. Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements. Nano Lett. 2018, 18, 3038–3046. [Google Scholar] [CrossRef]
- Mukherjee, A.; Ren, D.; Vullum, P.-E.; Huh, J.; Fimland, B.-O.; Weman, H. GaAs/AlGaAs Nanowire Array Solar Cell Grown on Si with Ultrahigh Power-per-Weight Ratio. ACS Photonics 2021, 8, 2355–2366. [Google Scholar] [CrossRef]
- Gibson, S.J.; van Kasteren, B.; Tekcan, B.; Cui, Y.; van Dam, D.; Haverkort, J.E.M.; Bakkers, E.P.A.M.; Reimer, M.E. Tapered InP Nanowire Arrays for Efficient Broadband High-Speed Single-Photon Detection. Nat. Nanotechnol. 2019, 14, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Raj, V.; Li, Z.; Tan, H.H.; Jagadish, C.; Fu, L. Self-Powered InP Nanowire Photodetector for Single-Photon Level Detection at Room Temperature. Adv. Mater. 2021, 33, 2105729. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Azimi, Z.; Li, Z.; Yu, Y.; Huang, L.; Jin, W.; Tan, H.H.; Jagadish, C.; Wong-Leung, J.; Fu, L. InAs Nanowire Arrays for Room-Temperature Ultra-Broadband Infrared Photodetection. Nanoscale 2023, 15, 10033–10041. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Ren, D.; Mosberg, A.B.; Vullum, P.-E.; van Helvoort, A.T.J.; Fimland, B.-O.; Weman, H. Origin of Leakage Currents and Nanowire-to-Nanowire Inhomogeneity in Radial p–i–n Junction GaAs Nanowire Array Solar Cells on Si. ACS Appl. Nano Mater. 2023, 6, 14103–14113. [Google Scholar] [CrossRef]
- Hrachowina, L.; Chen, Y.; Barrigón, E.; Wallenberg, R.; Borgström, M.T. Realization of Axially Defined GaInP/InP/InAsP Triple-Junction Photovoltaic Nanowires for High-Performance Solar Cells. Mater. Today Energy 2022, 27, 101050. [Google Scholar] [CrossRef]
- Espinet-Gonzalez, P.; Barrigón, E.; Otnes, G.; Vescovi, G.; Mann, C.; France, R.M.; Welch, A.J.; Hunt, M.S.; Walker, D.; Kelzenberg, M.D.; et al. Radiation Tolerant Nanowire Array Solar Cells. ACS Nano 2019, 13, 12860–12869. [Google Scholar] [CrossRef]
- Chen, Y.; Pistol, M.-E.; Anttu, N. Design for Strong Absorption in a Nanowire Array Tandem Solar Cell. Sci. Rep. 2016, 6, 32349. [Google Scholar] [CrossRef]
- Fast, J.; Aeberhard, U.; Bremner, S.P.; Linke, H. Hot-Carrier Optoelectronic Devices Based on Semiconductor Nanowires. Appl. Phys. Rev. 2021, 8, 021309. [Google Scholar] [CrossRef]
III-V | Bandgap (eV) | Bandgap Wavelength (nm) |
---|---|---|
GaP | 2.27 1 | 546 |
GaAs | 1.42 | 873 |
InP | 1.34 | 925 |
InAs | 0.35 | 3540 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anttu, N. Absorption of Light in Vertical III-V Semiconductor Nanowires for Solar Cell and Photodetector Applications. Crystals 2023, 13, 1292. https://doi.org/10.3390/cryst13091292
Anttu N. Absorption of Light in Vertical III-V Semiconductor Nanowires for Solar Cell and Photodetector Applications. Crystals. 2023; 13(9):1292. https://doi.org/10.3390/cryst13091292
Chicago/Turabian StyleAnttu, Nicklas. 2023. "Absorption of Light in Vertical III-V Semiconductor Nanowires for Solar Cell and Photodetector Applications" Crystals 13, no. 9: 1292. https://doi.org/10.3390/cryst13091292
APA StyleAnttu, N. (2023). Absorption of Light in Vertical III-V Semiconductor Nanowires for Solar Cell and Photodetector Applications. Crystals, 13(9), 1292. https://doi.org/10.3390/cryst13091292