Structural Analysis, Characterization, and First-Principles Calculations of Bismuth Tellurium Oxides, Bi6Te2O15
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Single-Crystal Structure
3.2. Characterization
3.3. Local Dipole Moment and Structural Distortion
3.4. Structural Optimization
3.5. Electronic Band Structure and Density of State
3.6. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frit, B.; Jaymes, M. Synthesis and structural study of bismuth tellurates. Bull. Soc. Chim. Fr. 1974, 78, 402–406. [Google Scholar]
- Mercurio, D.; Champarnaud-Mesjard, J.C.; Gouby, I.; Frit, B. On the crystal structure of Bi2Te2O7. Eur. J. Solid State Inorg. Chem. 1998, 35, 49–65. [Google Scholar] [CrossRef]
- Ok, K.M.; Bhuvanesh, N.S.P.; Halasyamani, P.S. Bi2TeO5: Synthesis, structure, and powder Second Harmonic Generation properties. Inorg. Chem. 2001, 40, 1978–1980. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, L.; Baikusheva-Dimitrova, G.; Gospodinov, G. Thermodynamic properties of bismuth tellurites Bi2TeO5, Bi2Te4O11, Bi10Te2O19 and Bi16Te5O34. J. Therm. Anal. Calorim. 2016, 126, 829–835. [Google Scholar] [CrossRef]
- Montenegro, R.; Fabris, Z.V.; Capovilla, D.A.; de Oliveira, I.; Frejlich, J.; Carvalho, J.F. Electrical and photoelectrical properties of Bi2TeO5 single crystals. Opt. Mater. 2019, 94, 398–402. [Google Scholar] [CrossRef]
- de Oliveira, I.; Capovilla, D.A. Volatile and permanent optical gratings recorded in Bi2TeO5 photorefractive crystal under high cw intensity. Appl. Opt. 2020, 59, 2248–2253. [Google Scholar] [CrossRef]
- Han, M.; Wang, C.; Niu, K.; Yang, Q.; Wang, C.; Zhang, X.; Dai, J.; Wang, Y.; Ma, X.; Wang, J.; et al. Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite. Nat. Commun. 2022, 13, 5903. [Google Scholar] [CrossRef]
- Udovic, M.; Valant, M.; Suvorov, D. Phase formation and dielectric characterization of the Bi2O3-TeO2 system prepared in an oxygen atmosphere. J. Am. Ceram. Soc. 2004, 87, 591–597. [Google Scholar] [CrossRef]
- Udovic, M.; Valant, M.; Suvorov, D. Formation and decomposition of the Bi2TeO6 compound. J. Eur. Ceram. Soc. 2004, 24, 953–958. [Google Scholar] [CrossRef]
- Udovic, M.; Valant, M.; Suvorov, D. Dielectric ceramics from the TiO2-TeO2 and Bi2O3-TeO2 systems. Ceram. Trans. 2005, 167, 175–188. [Google Scholar]
- Rossell, H.J.; Leblanc, M.; Ferey, G.; Bevan, D.J.M.; Simpson, D.J.; Taylor, M.R. On the crystal structure of bismuth tellurium oxide (Bi2Te4O11). Aust. J. Chem. 1992, 45, 1415. [Google Scholar] [CrossRef]
- Lovas, G.A.; Dodony, I.; Poppl, L.; Szaller, Z. On the phase transitions of Bi2Te4O11. J. Solid State Chem. 1998, 135, 175–181. [Google Scholar] [CrossRef]
- Thomas, P.; Jeansannetas, B.; Champarnaud-Mesjard, J.C.; Frit, B. Crystal structure of a new mixed-valence bismuth oxotellurate Bi2TeIVTeVIO8. Eur. J. Solid State Inorg. Chem. 1996, 33, 637–646. [Google Scholar]
- Nenert, G.; Missen, O.P.; Lian, H.; Weil, M.; Blake, G.R.; Kampf, A.R.; Mills, S.J. Crystal structure and thermal behavior of Bi6Te2O15: Investigation of synthetic and natural pingguite. Phys. Chem. Miner. 2020, 47, 53. [Google Scholar] [CrossRef]
- Ferreira, K.D.; Gasparotto, G.; Maia, L.J.Q.; Reis, S.P.; Araujo, E.B.; Carvalho, J.F. Phase stability and properties of Bi6Te2O13+δ (δ = 0 or 2). Phys. B 2021, 605, 412780. [Google Scholar] [CrossRef]
- Kikuchi, T.; Kitami, Y.; Yokoyama, M.; Sakai, H. Pseudo-binary system bismuth oxide-tellurium oxide (Bi2O3-TeO2) in air. J. Mater. Sci. 1989, 24, 4275. [Google Scholar] [CrossRef]
- SAINT, Program for Area Detector Absorption Correction, version 4.05; Siemens Analytical X-ray Systems: Madison, WI, USA, 1995.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, 864–871. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Tran, F.; Laskowski, R.; Madsen, G.K.H.; Marks, L.D. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 2020, 152, 4101–4131. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Cohen, R.E. More accurate generalized gradient approximation for solids. Phys. Rev. B 2006, 73, 235116. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnso, E.R. A simple effective potential for exchange. J. Chem. Phys. 2006, 124, 221101. [Google Scholar] [CrossRef] [PubMed]
- Tran, F.; Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Brown, I.D. Bond Valences—A simple structural model for inorganic chemistry. Chem. Soc. Rev. 1978, 7, 359–376. [Google Scholar] [CrossRef]
- Brown, I.D. Recent developments in the methods and applications of the Bond Valence Model. Chem. Rev. 2009, 109, 6858–6919. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. Sect. B 1985, 41, 244–247. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A: Theory and Applications in Inorganic Chemistry, 5th ed.; John Wiley & Sons, Inc: New York, NY, USA, 1997. [Google Scholar]
- Maggard, P.A.; Nault, T.S.; Stern, C.L.; Poeppelmeier, K.R. Alignment of acentric [MoO3F3]3− anions in a polar material: (Ag3MoO3F3)(Ag3MoO4)Cl. J. Solid State Chem. 2003, 175, 27–33. [Google Scholar] [CrossRef]
- Izumi, H.K.; Kirsch, J.E.; Stern, C.L.; Poeppelmeier, K.R. Examining the out-of-center distortion in the [NbOF5]2− anion. Inorg. Chem. 2005, 44, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Galy, J.; Meunier, G. Stereochimie des elements comportant des paires non liees: Ge (II), As (III), Se (IV), Br (v), Sn (II), Sb (III), Te (IV), I (V), Xe (VI), Tl (I), Pb (II), et Bi (III) (oxydes, fluorures et oxyfluorures). J. Solid State Chem. 1975, 13, 142–159. [Google Scholar] [CrossRef]
- Halasyamani, P.S. Asymmetric cation coordination in oxide materials: Influence of lone-pair cations on the intra-octahedral. Chem. Mater. 2004, 16, 3586–3592. [Google Scholar] [CrossRef]
- Ok, K.M.; Halasyamani, P.S. Mixed-metal tellurites: Synthesis, structure, and characterization of Na1.4Nb3Te4.9O18 and NaNb3Te4O16. Inorg. Chem. 2005, 44, 3919–3925. [Google Scholar] [CrossRef]
- Ok, K.M.; Halasyamani, P.S. Distortions in octahedrally coordinated d0 transition metal oxides: A continuous symmetry measures approach. Chem. Mater. 2006, 18, 3176–3183. [Google Scholar] [CrossRef]
- Brown, I.D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, 1st ed.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Marvel, M.R.; Lesage, J.; Baek, J.; Halasyamani, P.S.; Stern, C.L.; Poeppelmeier, K.R. Cation−anion interactions and polar structures in the solid state. J. Am. Chem. Soc. 2007, 129, 13963–13969. [Google Scholar] [CrossRef]
- Orlov, I.P.; Popov, K.A.; Urusov, V.S. Program for predicting interatomic distances in crystals by the bond valence method. J. Struct. Chem. 1998, 39, 575–579. [Google Scholar] [CrossRef]
- Yatoo, M.A.; Seymour, I.D.; Skinner, S.J. Neutron diffraction and DFT studies of oxygen defect and transport in higher-order Ruddlesden–Popper phase materials. RSC Advances 2023, 13, 13786–13797. [Google Scholar] [CrossRef] [PubMed]
- Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. J. Geophys. Res. Solid Earth 1978, 83, 1257–1268. [Google Scholar] [CrossRef]
- Murnaghan, F.D. The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 1944, 30, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Setyawan, W.; Curtarolo, S. High-throughput electronic band structure calculations: Challenges and tools. Comput. Mater. Sci. 2010, 49, 299–312. [Google Scholar] [CrossRef]
- Kokalj, A. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comp. Mater. Sci. 2003, 28, 155–168. [Google Scholar] [CrossRef]
- Engel, E.; Vosko, S.H. Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys. Rev. B 1993, 47, 13164. [Google Scholar] [CrossRef]
- Dufek, P.; Blaha, P.; Schwarz, K. Applications of Engel and Vosko’s generalized gradient approximation in solids. Phys. Rev. B 1994, 50, 7279. [Google Scholar] [CrossRef]
- Johnson, K.A.; Ashcroft, N.W. Corrections to density-functional theory band gaps. Phys. Rev. B 1998, 58, 15548–15556. [Google Scholar] [CrossRef]
- Wooten, F. Optical Properties of Solid; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties; Springer-Verlag: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Ambrosch-Draxl, C.; Sofo, J.O. Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 2006, 175, 1–14. [Google Scholar] [CrossRef]
- Puschnig, P.; Ambrosch-Draxl, C. Optical absorption spectra of semiconductors and insulators including electron-hole correlations: An ab initio study within the LAPW method. Phys. Rev. B 2002, 66, 165105. [Google Scholar] [CrossRef]
- Hill, N.A.; Battig, P.; Daul, C. First principles search for multiferroism in BiCrO3. J. Phys. Chem. B 2002, 106, 3383–3388. [Google Scholar] [CrossRef]
Empirical formula | Bi6Te2O15 |
Formula weight | 1749.08 |
Temperature | 100(2) K |
Wavelength | 0.71073 Å |
Crystal system | Orthorhombic |
Space group | Pnma (No. 62) |
Unit cell dimensions | a = 10.5831(12) Å α = 90° |
b = 22.694(3) Å β= 90° | |
c = 5.3843(6) Å γ = 90° | |
Volume | 1293.2(3) Å3 |
Z | 4 |
Density (calculated) | 8.984 Mg/m3 |
Absorption coefficient | 85.869 mm−1 |
F(000) | 2888 |
Crystal size | 0.150 × 0.040 × 0.030 mm3 |
Theta range for data collection | 1.795 to 26.372° |
Index ranges | −12 ≤ h ≤ 13, −28 ≤ k ≤ 28, −6 ≤ l ≤ 6 |
Reflections collected | 7178 |
Independent reflections | 1316 [R(int) = 0.0384] |
Completeness to theta = 25.242° | 96.90% |
Absorption correction | Numerical |
Max. and min. transmission | 0.13931 and 0.02840 |
Refinement method | Full-matrix least squares on F2 |
Data / restraints / parameters | 1316/0/110 |
Goodness-of-fit on F2 | 1.079 |
Final R indices [I>2sigma(I)] | R1 = 0.0364, wR2 = 0.0744 |
R indices (all data) | R1 = 0.0475, wR2 = 0.0791 |
Extinction coefficient | 0.00196(8) |
Largest diff. peak and hole | 2.415 and −1.457 e Å−3 |
Cation | Anion | Bond Length | BVS |
---|---|---|---|
Bi(1) | O(7)#1 | 2.168(9) | 3.01 (Bi3+) |
Bi(1) | O(7) | 2.200(8) | |
Bi(1) | O(5) | 2.265(9) | |
Bi(1) | O(2)#1 | 2.335(9) | |
Bi(1) | O(4)#2 | 2.530(9) | |
Bi(2) | O(8) | 2.098(12) | 2.94 (Bi3+) |
Bi(2) | O(1)#3 | 2.221(9) | |
Bi(2) | O(1)#4 | 2.221(9) | |
Bi(2) | O(6)#5 | 2.583(9) | |
Bi(2) | O(6) | 2.583(9) | |
Bi(3) | O(8)#6 | 2.148(12) | 2.89 (Bi3+) |
Bi(3) | O(6)#2 | 2.226(9) | |
Bi(3) | O(6)#7 | 2.226(9) | |
Bi(3) | O(3) | 2.531(10) | |
Bi(3) | O(3)#5 | 2.531(10) | |
Bi(3) | O(7) | 2.142(9) | |
Bi(4) | O(4)#8 | 2.226(9) | 2.77 (Bi3+) |
Bi(4) | O(3)#1 | 2.269(9) | |
Bi(4) | O(5)#9 | 2.536(9) | |
Bi(4) | O(2)#10 | 2.585(9) | |
Bi(4) | O(2) | 1.906(8) | |
Te(1) | O(4) | 1.912(8) | 5.80 (Te6+) |
Te(1) | O(1) | 1.929(9) | |
Te(1) | O(5) | 1.938(9) | |
Te(1) | O(3) | 1.938(9) | |
Te(1) | O(6) | 1.958(9) | |
Te(1) | O(7)#1 | 2.168(9) |
Species | Dipole Moment (D) | Species | Dipole Moment (D) |
---|---|---|---|
Bi(1)O5 | 18.3 | Bi(1)O5(Lp) | 9.3 |
Bi(2)O5 | 13.2 | Bi(2)O5(Lp) | 7.9 |
Bi(3)O5 | 16.2 | Bi(3)O5(Lp) | 8.8 |
Bi(4)O5 | 16.2 | Bi(4)O5(Lp) | 6.8 |
Te(1)O6 | 0.5 |
1 GGA-PBE | 2 GGA-PBESol | 3 GGA-WC | Single Crystal | |
---|---|---|---|---|
ao (Å) | 10.791 | 10.618 | 10.688 | 10.583 |
bo (Å) | 23.139 | 22.769 | 22.919 | 22.694 |
co (Å) | 5.490 | 5.402 | 5.438 | 5.384 |
Volume (Å3) | 4895.046 | 4664.148 | 4756.507 | 4617.674 |
Bo (GPa) | 145.337 | 159.234 | 154.845 | |
Bo′(Gpa) | 4.101 | 5.762 | 4.170 | |
Eo (Ry) | −1,153,695.25 | −1,153,345.57 | −1,153,604.27 |
XC | Band-Gap Energy (eV) |
---|---|
GGA-PBE | 2.53 |
GGA-WC | 2.78 |
GGA-PBESOL | 2.54 |
TB-mBJ | 3.36 |
Experimental | 3.29 |
Components | ε1(0) (eV) | n(0) | I(ω) (eV) | R(0) | σ(ω) (Ω cm)−1 | L(ω) (eV) |
---|---|---|---|---|---|---|
xx | 4.06 | 2.05 | 3.16 | 0.10 | 5763 | 3.22 |
yy | 4.24 | 2.08 | 3.30 | 0.12 | 6247 | 3.24 |
zz | 4.13 | 2.06 | 3.22 | 0.11 | 6202 | 3.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.W.; Chang, H.Y. Structural Analysis, Characterization, and First-Principles Calculations of Bismuth Tellurium Oxides, Bi6Te2O15. Crystals 2024, 14, 23. https://doi.org/10.3390/cryst14010023
Kim SW, Chang HY. Structural Analysis, Characterization, and First-Principles Calculations of Bismuth Tellurium Oxides, Bi6Te2O15. Crystals. 2024; 14(1):23. https://doi.org/10.3390/cryst14010023
Chicago/Turabian StyleKim, Sun Woo, and Hong Young Chang. 2024. "Structural Analysis, Characterization, and First-Principles Calculations of Bismuth Tellurium Oxides, Bi6Te2O15" Crystals 14, no. 1: 23. https://doi.org/10.3390/cryst14010023
APA StyleKim, S. W., & Chang, H. Y. (2024). Structural Analysis, Characterization, and First-Principles Calculations of Bismuth Tellurium Oxides, Bi6Te2O15. Crystals, 14(1), 23. https://doi.org/10.3390/cryst14010023