Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis
2.3. Characterization
3. Results
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; He, J.; Ding, X.; Zhou, J.; Ma, Y.; Wu, S.; Huang, R. A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J. Power Sources 2010, 195, 6854–6859. [Google Scholar] [CrossRef]
- Chen, G.X.; Huang, Q.; Wu, T.; Lu, L. Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—A review. Adv. Funct. Mater. 2020, 30, 2001289. [Google Scholar] [CrossRef]
- Barker, J.; Saidi, M.Y.; Swoyer, J. Lithium Metal Fluorophosphate Materials and Preparation Thereof. US Patent 6,387,568 B1, 14 May 2002. [Google Scholar]
- Barker, J.; Saidi, M.Y.; Swoyer, J. Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4 F. J. Electrochem. Soc. 2003, 150, A1394–A1398. [Google Scholar] [CrossRef]
- Barker, J.; Gover, R.K.B.; Burns, P.; Bryan, A.; Saidi, M.Y.; Swoyer, J.L. Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F. J. Power Sources 2005, 146, 516–520. [Google Scholar] [CrossRef]
- Barker, J.; Saidi, M.Y.; Swoyer, J.L. A comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J. Electrochem. Soc. 2004, 51, A1670–A1677. [Google Scholar] [CrossRef]
- Arroyo y de Dompablo, M.E.; Amador, U.; Tarascon, J.M. A computational investigation on fluorinated-polyanionic compounds as positive electrode for lithium batteries. J. Power Sources 2007, 174, 1251–1257. [Google Scholar] [CrossRef]
- Gover, R.K.B.; Bryan, A.; Burns, P.; Barker, J. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ion 2006, 177, 1495–1500. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, G.; Li, A.; Wang, C.; Wei, Y. Sol–gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J. Alloys Compd. 2009, 478, 604–607. [Google Scholar] [CrossRef]
- Barker, J.; Gover, R.K.B.; Burns, P.; Bryan, A.J. Hybrid-Ion: A lithium-ion cell based on a sodium insertion material. Electrochem. Solid State Lett. 2006, 9, A190–A192. [Google Scholar] [CrossRef]
- Barker, J.; Gover, R.K.B.; Burns, P.; Bryan, A.J. Li4/3Ti5/3O4||Na3V2(PO4)2F3: An example of a hybrid-ion cell using a non-graphitic anode. J. Electrochem. Soc. 2007, 154, A882–A887. [Google Scholar] [CrossRef]
- Barker, J.; Saidi, M.Y.; Swoyer, J.L. Sodium Ion Batteries. WO 02097907 A2, 05 December 2002. [Google Scholar]
- Sauvage, F.; Quarez, E.; Tarascon, J.M.; Baudrin, E. Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sci. 2006, 8, 1215–1221. [Google Scholar] [CrossRef]
- Hu, L.; Cheng, S.; Xiao, S.; Li, W.; Chen, Z.; Li, W.; Huang, B.; Liu, Q.; Chen, Q. Dually decorated Na3V2(PO4)2F3 by carbon and 3D graphene as cathode material for sodium-ion batteries with high energy and power densities. ChemElectroChem 2020, 7, 3975–3983. [Google Scholar] [CrossRef]
- Criado, A.; Lavela, P.; Pérez-Vicente, C.; Ortiz, G.F.; Tirado, J.L. Effect of chromium doping on Na3V2(PO4)2F3@C as promising positive electrode for sodium-ion batteries. J. Electroanal. Chem. 2020, 856, 113694. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, X.; Zhou, Y.; Chu, W. Microwave-assisted synthesis of porous nano-sized Na3V2(PO4)2F3@C nanospheres for sodium ion batteries with enhanced stability. Scr. Mater. 2020, 181, 92–96. [Google Scholar] [CrossRef]
- Burova, D.; Shakhova, I.; Morozova, P.; Iarchuk, A.; Drozhzhin, O.A.; Rozova, M.G.; Praneetha, S.; Murugan, V.; Tarascond, J.M.; Abakumov, A.M. The rapid microwave-assisted hydrothermal synthesis of NASICON-structured Na3V2O2x(PO4)2F3-2x (0 < x ≤ 1) cathode materials for Na-ion batteries. RSC Adv. 2019, 9, 19429–19440. [Google Scholar] [CrossRef] [PubMed]
- Goubard-Bretesche, N.; Kemnitz, E.; Pinna, N. A general low-temperature synthesis route to polyanionic vanadium phosphate fluoride cathode materials: AVPO4F (A = Li, Na, K) and Na3V2(PO4)2F3. Mater. Chem. Front. 2019, 3, 2164–2174. [Google Scholar] [CrossRef]
- Hu, F.; Jiang, X. Superior performance of carbon modified Na3V2(PO4)2F3 cathode material for sodium-ion batteries. Inorg. Chem. Commun. 2021, 129, 108653. [Google Scholar] [CrossRef]
- Bi, L.; Miao, Z.; Li, X.; Song, Z.; Zheng, Q.; Lin, D. Improving electrochemical performance of Na3(VPO4)2O2F cathode materials for sodium ion batteries by constructing conductive scaffold. Electrochim. Acta 2020, 337, 135816. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Yamase, T.; Makino, H. Crystal and electronic structures and magnetic susceptibility of the photochemically prepared layered vanadyl phosphate Na(VO)2(PO4)2·4H2O. J. Chem. Soc. Dalton Trans. 2000, 7, 1143–1150. [Google Scholar] [CrossRef]
- Pang, G.S.; Feng, S.H.; Xu, R.R.; Hong, M.C. Hydrothermal synthesis and crystal structure of the sodium vanadyl phosphate NaVPO5. Chem. J. Chin. Uni. 1998, 19, 1891–1894. [Google Scholar]
- Ling, M.X.; Lv, Z.Q.; Li, F.; Zhao, J.M.; Zhang, H.M.; Hou, G.J.; Zheng, Q. Revisiting of tetragonal NaVPO4F: A high energy density cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 30510–30519. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, M.; Brisset, N.; Fauth, F.; Weill, F.; Elkaim, E.; Suard, E.; Masquelier, C.; Croguennec, L. Na3V2(PO4)2F3 revisited: A high-resolution diffraction study. Chem. Mater. 2014, 26, 4238–4247. [Google Scholar] [CrossRef]
- Le Meins, J.M.; Crosnier-Lopez, M.P.; Hemon-Ribaud, A.; Courbion, G. Phase transitions in the Na3M2(PO4)2F3 family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 1999, 148, 260–277. [Google Scholar] [CrossRef]
- Martin, E.L.; Bentley, K.E. Spectrophotometric investigation of vanadium(II), vanadium(III), and vanadium(IV) in various media. Anal. Chem. 1962, 34, 354–358. [Google Scholar] [CrossRef]
- Brandão, P.; Valente, A.A.; Rocha, J.; Anderson, M.W. Synthesis, characterization and catalytic activity of vanadium-containing ETS-10. Stud. Sci. Catal. 2002, 142, 327–334. [Google Scholar] [CrossRef]
- Qi, Y.R.; Tong, Z.Z.; Zhao, J.M.; Ma, L.; Wu, T.P.; Liu, H.Z.; Yang, C.; Lu, J.; Hu, Y.S. Scalable Room-Temperature Synthesis of Multi-shelled Na3(VOPO4)2F Microsphere Cathodes. Joule 2018, 2, 2348–2363. [Google Scholar] [CrossRef]
- Shen, X.; Zhou, Q.; Han, M.; Qi, X.G.; Li, B.; Zhang, Q.Q.; Zhao, J.M.; Yang, C.; Liu, H.Z.; Hu, Y.S. Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nat. Commun. 2021, 12, 2848. [Google Scholar] [CrossRef]
- Qi, Y.R.; Mu, L.Q.; Zhao, J.M.; Hu, Y.S.; Liu, H.Z.; Dai, S. Superior Na-storage performance of low-temperature-synthesized Na3(VO1–xPO4)2F1+2x (0 ≤ x ≤ 1) nanoparticles for Na-ion batteries. Angew. Chem. Int. Ed. 2015, 54, 9911–9916. [Google Scholar] [CrossRef]
- Li, L.; Xu, Y.L.; Sun, X.F.; Chang, R.; Zhang, Y.; Zhang, X.N.; Li, J. Fluorophosphates from solid-state synthesis and electrochemical ion exchange: NaVPO4F or Na3V2(PO4)2F3? Adv. Energy Mater. 2018, 8, 1801064. [Google Scholar] [CrossRef]
- Boivin, E.; Chotard, J.N.; Ménétrier, M.; Bourgeois, L.; Bamine, T.; Carlier, D.; Fauth, F.; Masquelier, C.; Croguennec, L. Oxidation under air of tavorite LiVPO4F: Influence of vanadyl-type defects on its electrochemical properties. J. Phys. Chem. C 2016, 120, 26187–26198. [Google Scholar] [CrossRef]
Sample | F/V | H2O/V | Time | Cell Parameters (Å; °; Å3) |
---|---|---|---|---|
1 * | 0.1 | 70 | 24 | a = 6.365, c = 10.835, and V = 439.0 |
a = 6.293, b = 6.294, c = 6.834, α = 107.04, β = 92.34, γ = 90.13, and V = 258.6 | ||||
2 * | 0.1 | 70 | 72 | a = 6.365, c = 10.825, and V = 438.6 |
a = 6.293, b = 6.294, c = 6.834, α = 107.04, β = 92.34, | ||||
γ = 90.13, and V = 258.6 | ||||
3 | 0.7 | 70 | 24 | a = 9.039, c = 10.680, and V = 872.6 |
4 * | 0.7 | 70 | 72 | a = 6.382, c = 10.634, and V = 433.1 |
a = 6.292, b = 6.298, c = 6.834, α = 107.16, β = 92.44, | ||||
γ = 90.12, and V = 258.5 | ||||
5 | 2.1 | 70 | 24 | a = 9.043, c = 10.655, and V = 871.3 |
6 | 2.1 | 70 | 72 | a = 9.041, c = 10.655, and V = 870.9 |
7 | 0.7 | 140 | 2 | a = 6.378, c = 10.636, and V = 432.7 |
8 | 0.7 | 140 | 5 | a = 6.382, c = 10.661, and V = 434.2 |
9 | 0.7 | 140 | 24 | a = 6.385, c = 10.685, and V = 435.6 |
10 | 0.7 | 140 | 72 | a = 6.386, c = 10.683, and V = 435.7 |
11 | 2.1 | 140 | 2 | a = 6.384, c = 10.608, and V = 432.3 |
12 | 2.1 | 140 | 5 | a = 6.392, c = 10.636, and V = 434.6 |
13 | 2.1 | 140 | 24 | a = 9.041, c = 10.655, and V = 870.9 |
14 | 2.1 | 140 | 72 | a = 9.044, c = 10.655, and V = 871.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z. Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x. Crystals 2024, 14, 43. https://doi.org/10.3390/cryst14010043
Lin Z. Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x. Crystals. 2024; 14(1):43. https://doi.org/10.3390/cryst14010043
Chicago/Turabian StyleLin, Zhi. 2024. "Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x" Crystals 14, no. 1: 43. https://doi.org/10.3390/cryst14010043
APA StyleLin, Z. (2024). Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x. Crystals, 14(1), 43. https://doi.org/10.3390/cryst14010043