X-ray Structure of Eleven New N,N′-Substituted Guanidines: Effect of Substituents on Tautomer Structure in the Solid State
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Equipment, and Analysis
2.2. General Procedure A: Classical Heating
2.3. General Procedure B: Microwave
2.4. Synthesised Guanidines
2.4.1. 1-Benzyl-2-(4,6-dimethylpyrimidin-2-yl)guanidine (5)
2.4.2. 1-Benzyl-2-(4,6-dimethylpyrimidin-2-yl)guanidine hydrochloride (5-HCl)
2.4.3. 2-(4,6-Dimethylpyrimidin-2-yl)-1-(2-methylbenzyl)guanidine (6)
2.4.4. (S)-1-(4,6-Dimethylpyrimidin-2-yl)-3-(1-phenylethyl)guanidine (7)
2.4.5. (1-(4,6-Dimethylpyrimidin-2-yl)-3-(2,2,2-trifluoro-1-phenylethyl)guanidine (8)
2.4.6. (1-(4,6-Dimethylpyrimidin-2-yl)-3-(2,2,2-trifluoro-1-phenylethyl)guanidine hydrochloride (8-HCl)
2.4.7. 1-(Cyclohexylmethyl)-2-(4,6-dimethylpyrimidin-2-yl)guanidine (9)
2.4.8. 1-Butyl-2-(4,6-dimethylpyrimidin-2-yl)guanidine (10)
2.4.9. N′-(4,6-Dimethylpyrimidin-2-yl) pyrrolidine-1-carboximidamide (11)
2.4.10. N′-(4,6-Dimethylpyrimidin-2-yl)-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indole-2-carboximidamide (12)
2.5. X-ray Crystal Determination
3. Results and Discussion
3.1. Synthesis
3.2. X-ray Crystal Structures
3.3. Calculations
3.4. Description of the Solid-Phase Guanidine Structures
3.5. Hydrogen Bonding and the Effect on Solid-Phase Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glaser, D. Specialization and phyletic trends of sweetness reception in animals. Pure App. Chem. 2002, 74, 1153–1158. [Google Scholar] [CrossRef]
- Leow, D.; Tan, C.-H. Chiral Bicyclic Guanidine, Bis-Guanidinium, Pentanidium and Related Organocatalysts. Top. Heterocycl. Chem. 2017, 50, 129–156. [Google Scholar] [CrossRef]
- Dong, S.; Feng, X.; Liu, X. Chiral guanidines and their derivatives in asymmetric synthesis. Chem. Soc. Rev. 2018, 47, 8525–8540. [Google Scholar] [CrossRef]
- Geiselhart, C.M.; Schmitt, C.W.; Jöckle, P.; Mutlu, H.; Barner-Kowollik, C. A Guanidine-Based Superbase as Efficient Chemiluminescence Booster. Sci. Rep. 2019, 9, 14519. [Google Scholar] [CrossRef]
- Bailey, P.J.; Pace, S. The coordination chemistry of guanidines and guanidinates. Coord. Chem. Rev. 2001, 214, 91–141. [Google Scholar] [CrossRef]
- Manna, S.; Truong, J.; Hammond, M.C. Guanidine Biosensors Enable Comparison of Cellular Turn-on Kinetics of Riboswitch-Based Biosensor and Reporter. ACS Synth. Biol. 2021, 10, 566–578. [Google Scholar] [CrossRef]
- Gomes, A.R.; Varela, C.L.; Pires, A.S.; Tavares-da-Silva, E.J.; Roleira, F.M.F. Synthetic and natural guanidine derivatives as antitumor and antimicrobial agents: A review. Bioorg. Chem. 2023, 138, 106600. [Google Scholar] [CrossRef]
- Gorbunova, M.; Lemkina, L.; Borisova, I. New guanidine-containing polyelectrolytes as advanced antibacterial materials. Eur. Polym. J. 2018, 105, 426–433. [Google Scholar] [CrossRef]
- Cunningham, I.D.; Wan, N.C.; Cox, B.G. 1H and 15N NMR studies of N-substituted-N′-cyanoguanidines. J. Chem. Soc. Perkin Trans. 2 1994, 1849–1853. [Google Scholar] [CrossRef]
- Caine, B.A.; Dardonville, C.; Popelier, P.L.A. Prediction of Aqueous pKa Values for Guanidine-Containing Compounds Using Ab Initio Gas-Phase Equilibrium Bond Lengths. ACS Omega 2018, 3, 3835–3850. [Google Scholar] [CrossRef]
- Dardonville, C.; Caine, B.A.; Navarro de la Fuente, M.; Martín Herranz, G.; Corrales Mariblanca, B.; Popelier, P.L.A. Substituent effects on the basicity (pKa) of aryl guanidines and 2-(arylimino)imidazolidines: Correlations of pH-metric and UV-metric values with predictions from gas-phase ab initio bond lengths. New J. Chem. 2017, 41, 11016–11028. [Google Scholar] [CrossRef]
- Tanganov, B.B.; Alekseeva, I.A. Acid-base equilibria in solutions of polyacid bases (model and experiment): I. Thermodynamic dissociation constants of protonated mono- and diacid bases. Russ. J. Gen. Chem. 2006, 76, 1724–1728. [Google Scholar] [CrossRef]
- Paixao, J.A.; Matos Beja, A.; Pereira Silva, P.S.; Ramos Silva, M.; Alte da Veiga, L. A new orthorhombic phase of N,N’-diphenylguanidine. Acta Crystallogr. Sect. C 1999, 55, 1037–1040. [Google Scholar] [CrossRef]
- Zeng, C.-J.; Chen, C.-J.; Chang, C.-W.; Chen, H.-T.; Chien, T.-C. Copper(I) Iodide-Catalyzed Synthesis of N,N′-Disubstituted Guanidines from N-Substituted Cyanamides. Aust. J. Chem. 2014, 67, 1134–1137. [Google Scholar] [CrossRef]
- Carpy, A.; Leger, J.-M.; Wermuth, C.-G.; Leclerc, G. Structure de la (dichloro-2,6 phenyl)-2 methyl-1 guanidine base et chlorhydrate; un analogue ouvert de la clonidine. Acta Cryst. 1981, B37, 885–889. [Google Scholar] [CrossRef]
- Brown, C.J.; Gash, D.J. N,N’-Bis(2-methylphenyl)guanidine, C15H17N3. Acta Crystallogr. Sect. C 1984, 40, 562–564. [Google Scholar] [CrossRef]
- Pareras, G.; Palusiak, M.; Duran, M.; Solà, M.; Simon, S. Tuning the Strength of the Resonance-Assisted Hydrogen Bond in o-Hydroxybenzaldehyde by Substitution in the Aromatic Ring1. J. Phys. Chem. A 2018, 122, 2279–2287. [Google Scholar] [CrossRef] [PubMed]
- Janusz Grabowski, S. π-Electron delocalisation for intramolecular resonance assisted hydrogen bonds. J. Phys. Org. Chem. 2003, 16, 797–802. [Google Scholar] [CrossRef]
- Rusinska-Roszak, D. Energy of Intramolecular Hydrogen Bonding in ortho-Hydroxybenzaldehydes, Phenones and Quinones. Transfer of Aromaticity from ipso-Benzene Ring to the Enol System(s). Molecules 2017, 22, 481. [Google Scholar] [CrossRef]
- Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the .beta.-diketone fragment. J. Am. Chem. Soc. 1989, 111, 1023–1028. [Google Scholar] [CrossRef]
- Elumalai, V.; Vaclav, E.; Visnes, T.; Sundby, E.; Hoff, B.H. Improved Synthetic Methodology, Substrate Scope and X-ray Crystal Structure for N, N’-disubstituted Guanidines. ChemistrySelect 2024, 9, e202304381. [Google Scholar] [CrossRef]
- Kohoutova, K.; Dočekal, V.; Ausserlechner, M.J.; Kaiser, N.; Tekel, A.; Mandal, R.; Horvath, M.; Obsilova, V.; Vesely, J.; Hagenbuchner, J.; et al. Lengthening the Guanidine–Aryl Linker of Phenylpyrimidinylguanidines Increases Their Potency as Inhibitors of FOXO3-Induced Gene Transcription. ACS Omega 2022, 7, 34632–34646. [Google Scholar] [CrossRef] [PubMed]
- Ciarlantini, M.S.; Barquero, A.; Bayo, J.; Wetzler, D.; Dodes Traian, M.M.; Bucci, H.A.; Fiore, E.J.; Gandolfi Donadio, L.; Defelipe, L.; Turjanski, A.; et al. Development of an Improved Guanidine-Based Rac1 Inhibitor with in vivo Activity against Non-Small Cell Lung Cancer. ChemMedChem 2021, 16, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Rigaku, O.D. CrysAlis PRO; Rigaku Oxford Diffraction Ltd.: Yarnton, UK, 2020. [Google Scholar]
- Palatinus, L.; Chapuis, G. SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007, 40, 786–790. [Google Scholar] [CrossRef]
- Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K.; Watkin, D.J. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003, 36, 1487. [Google Scholar] [CrossRef]
- Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Jana2020—A new version of the crystallographic computing system Jana. Z. Für Krist. —Cryst. Mater. 2023, 238, 271–282. [Google Scholar] [CrossRef]
- Abou-Shehada, S.; Teasdale, M.C.; Bull, S.D.; Wade, C.E.; Williams, J.M.J. Lewis Acid Activation of Pyridines for Nucleophilic Aromatic Substitution and Conjugate Addition. ChemSusChem 2015, 8, 1083–1087. [Google Scholar] [CrossRef]
- Rohlicek, J.; Husak, M. MCE2005—A new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Cryst. 2007, 40, 600–601. [Google Scholar] [CrossRef]
- Brandenburg, K. DIAMOND; Crystal Impact GbR: Bonn, Germany, 1999. [Google Scholar]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Phys. Chem. 1993, 98, 1358–1371. [Google Scholar] [CrossRef]
- Sun, Q.; Berkelbach, T.C.; Blunt, N.S.; Booth, G.H.; Guo, S.; Li, Z.; Liu, J.; McClain, J.D.; Sayfutyarova, E.R.; Sharma, S.; et al. PySCF: The Python-based simulations of chemistry framework. WIREs Comput. Mol. Sci. 2018, 8, e1340. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N.S.; Bogdanov, N.A.; Booth, G.H.; Chen, J.; Cui, Z.-H.; et al. Recent developments in the PySCF program package. J. Chem. Phys. 2020, 153, 024109. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhao, F.; Zhang, Y.; Wang, X.; Xiao, X.; Zhang, J.Z.H.; Ji, C. MolTaut: A Tool for the Rapid Generation of Favorable Tautomer in Aqueous Solution. J. Chem. Inf. Model. 2023, 63, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 1987, 2, S1–S19. [Google Scholar] [CrossRef]
- Pietruś, W.; Kafel, R.; Bojarski, A.J.; Kurczab, R. Hydrogen Bonds with Fluorine in Ligand-Protein Complexes-the PDB Analysis and Energy Calculations. Molecules 2022, 27, 1005. [Google Scholar] [CrossRef]
- Gross, K.C.; Seybold, P.G.; Peralta-Inga, Z.; Murray, J.S.; Politzer, P. Comparison of Quantum Chemical Parameters and Hammett Constants in Correlating pKa Values of Substituted Anilines. J. Org. Chem. 2001, 66, 6919–6925. [Google Scholar] [CrossRef]
- Tehan, B.G.; Lloyd, E.J.; Wong, M.G.; Pitt, W.R.; Gancia, E.; Manallack, D.T. Estimation of pKa Using Semiempirical Molecular Orbital Methods. Part 2: Application to Amines, Anilines and Various Nitrogen Containing Heterocyclic Compounds. Quant. Struct.-Act. Relat. 2002, 21, 473–485. [Google Scholar] [CrossRef]
- Hall, H.K., Jr. Correlation of the Base Strengths of Amines1. J. Am. Chem. Soc. 1957, 79, 5441–5444. [Google Scholar] [CrossRef]
- Smith, P.J.; Noble, A. A Primary Hydrogen-Deuterium Isotope Effect Study on the Carbonyl Elimination Reaction of 9-Fluorenyl Nitrate with Various Bases. Can. J. Chem. 1975, 53, 263–268. [Google Scholar] [CrossRef]
- Juranic, I. Simple Method for the Estimation of pKa of Amines. Croat. Chem. Acta 2014, 87, 343–347. [Google Scholar] [CrossRef]
- CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2016; Volume 97.
Comp. | Structure | AS 1 | Space Group |
---|---|---|---|
1 | 1 | P21/c | |
2 | 1 | P1 | |
3 | 2 | P21/n | |
4 | 1 | P1 | |
5 | 1 | P21/c | |
6 | 1 | P21/c | |
7 | 3 | P21 | |
8 | 3 | Cc | |
9 | 2 | P21/c | |
10 | 2 | P21/c | |
11 | 3 | P1 | |
12 | 3 | P21/c |
Comp. | N3-C2 | C2-N1 | C2-N7 | N7-C8 | C8-N9 | C8-N10 | N10-C11 |
1 | 1.346 | 1.358 | 1.375 | 1.328 | 1.340 | 1.368 | 1.407 |
2 | 1.341 | 1.339 | 1.384 | 1.386 | 1.343 | 1.301 | 1.400 |
3 | 1.342 | 1.339 | 1.387 | 1.380 | 1.335 | 1.313 | 1.402 |
4 | 1.334 | 1.342 | 1.379 | 1.386 | 1.336 | 1.294 | 1.412 |
5 | 1.352 | 1.359 | 1.367 | 1.334 | 1.341 | 1.339 | 1.457 |
6 | 1.349 | 1.360 | 1.369 | 1.332 | 1.342 | 1.346 | 1.459 |
7 | 1.352 | 1.362 | 1.367 | 1.333 | 1.347 | 1.346 | 1.455 |
8 | 1.351 | 1.360 | 1.368 | 1.333 | 1.343 | 1.344 | 1.457 |
9 | 1.353 | 1.362 | 1.368 | 1.333 | 1.347 | 1.346 | 1.453 |
10 | 1.349 | 1.361 | 1.362 | 1.339 | 1.355 | 1.343 | 1.456 |
11 | 1.352 | 1.359 | 1.371 | 1.343 | 1.341 | 1.344 | 1.467; 1.462 |
12 | 1.352 | 1.357 | 1.372 | 1.328 | 1.346 | 1.368 | 1.470; 1.471 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elumalai, V.; Eigner, V.; Janjua, N.A.; Åstrand, P.-O.; Visnes, T.; Sundby, E.; Hoff, B.H. X-ray Structure of Eleven New N,N′-Substituted Guanidines: Effect of Substituents on Tautomer Structure in the Solid State. Crystals 2024, 14, 884. https://doi.org/10.3390/cryst14100884
Elumalai V, Eigner V, Janjua NA, Åstrand P-O, Visnes T, Sundby E, Hoff BH. X-ray Structure of Eleven New N,N′-Substituted Guanidines: Effect of Substituents on Tautomer Structure in the Solid State. Crystals. 2024; 14(10):884. https://doi.org/10.3390/cryst14100884
Chicago/Turabian StyleElumalai, Vijayaragavan, Vaclav Eigner, Nicholas Alexander Janjua, Per-Olof Åstrand, Torkild Visnes, Eirik Sundby, and Bård Helge Hoff. 2024. "X-ray Structure of Eleven New N,N′-Substituted Guanidines: Effect of Substituents on Tautomer Structure in the Solid State" Crystals 14, no. 10: 884. https://doi.org/10.3390/cryst14100884
APA StyleElumalai, V., Eigner, V., Janjua, N. A., Åstrand, P. -O., Visnes, T., Sundby, E., & Hoff, B. H. (2024). X-ray Structure of Eleven New N,N′-Substituted Guanidines: Effect of Substituents on Tautomer Structure in the Solid State. Crystals, 14(10), 884. https://doi.org/10.3390/cryst14100884