Crystallographic and Optical Spectroscopic Study of Metal–Organic 2D Polymeric Crystals of Silver(I)– and Zinc(II)–Squarates
Abstract
:1. Introduction
Complex | [Zn(HC4O4)(H2O)4] | [Zn(C4O4)(H2O)4] | |
CCDC | 929462 | - | - |
Ref. | [43] | [51] | [9] |
Empirical formula | C8H10O12Zn | ZnC4O4,4H2O | ZnC4O4,4H2O |
Moiety formula | C8H10O12Zn | ‘C8 O16 Zn2’ | ‘C8 O16 Zn2’ |
Formula mass | - | 249.48 | - |
Crystal system | Triclinic | Monoclinic | Monoclinic |
Space Group | P-1 | C2/c | Cc |
a [Å] | 5.0919(5) | 8.986(2) | 9.012(2) |
b [Å] | 7.3113(7) | 13.333(2) | 13.336(3) |
c [Å] | 8.7536(7) | 6.694(3) | 6.746(2) |
α [o] | 66.440(6) | 90.00 | 90.00 |
β [o] | 77.254(7) | 99.67(2) | 99.33(2) |
γ [o] | 75.480(7) | 90.00 | 90.00 |
V [Å3] | 286.50(5) | 790.6(3) | 800.0 |
Z | 1 | 4 | - |
ρ [g·cm−1] | 2.107 | 2.096 | 2.07 |
F000 | 184 | - | - |
Μ (Mo-K) [mm−1] | 2.216 | 31.9 | - |
T [K] | 100(2) | 120(2) | - |
θ range | 4.68–29.66 | 40–90 | - |
Refl. collected | 3003 | 19653 | 2639 |
Unique refl. | 1308 | 4140 | - |
R1[2σ(I)] | 0.0513 | 0.023 | - |
R1 (all data) | 0.0534 | 0.024 | 0.039 |
wR2 | 0.1325 | 0.024 | 0.042 |
GooF | 1.092 | - | - |
Diff. peak/hole [e/Å3] | 1.464/−1.792 | 0.79/−1.13 | - |
Complex | [Zn(C4O4)(H2O)4] | ||
CCDC | 1917571 | 1917547 | 1565990 |
Single crystal | (1)_1 | (1)_2 | (1)_3 |
Ref. | This work [55] | This work [56] | This work |
Empirical formula | ZnC4O4,4H2O | ZnC4O4,4H2O | ZnC4O4,4H2O |
Moiety formula | ‘C8 O16 Zn2’ | ‘C8 O16 Zn2’ | C4 O8 Zn |
Formula mass | 482.82 | 482.82 | 241.41 |
Crystal system | Monoclinic | Monoclinic | Monoclinic |
Space Group | C2/c | C2/c | C2/c |
a [Å] | 9.003(3) | 9.003(3) | 8.982(3) |
b [Å] | 13.295(5) | 13.295(5) | 13.315(5) |
c [Å] | 6.746(3) | 6.746(3) | 6.734(3) |
α [o] | 90.00 | 90.00 | 90.00 |
β [o] | 99.244(17) | 99.244(17) | 99.327(15) |
γ [o] | 90.00 | 90.00 | 90.00 |
V [Å3] | 797.0(5) | 797.0(5) | 794.7(5) |
Z | 2 | 2 | 4 |
ρ [g·cm−1] | 2.012 | 2.012 | 2.018 |
F000 | 472 | 472 | 472 |
μ(Mo-K) [mm−1] | 3.095 | 3.095 | 3.104 |
T [K] | 293(2) | 300(2) | 293(2) |
θ range | 4.33–25.29 | 4.33–25.11 | 2.76–25.12 |
Refl. collected | 1180 | 1157 | 1200 |
Unique refl. | 643 | 641 | 586 |
R1[2σ(I)] | 0.0796 | 0.0581 | 0.0608 |
R1 (all data) | 0.0906 | 0.1562 | 0.0660 |
wR2 | 0.1937 | 0.1532 | 0.0721 |
GooF | 1.013 | 1.383 | 1.128 |
Diff. peak/hole [e/Å3] | 1.414/−1.477 | 0.674/−1.059 | 1.835/−1.344 |
2. Materials and Methods
2.1. Theory/Computations
2.2. Chemometrics
3. Results
3.1. Analysis of Chromatograms and Mass Spectra in Solution
3.2. Crystallographic Data
3.3. Electronic Optical Properties in Solution
3.4. Vibrational Properties in Crystalline State
3.5. Nonlinear Optical Properties
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, S.; Cheng, P.; Han, X.; Ge, F.; Shi, R.; Xu, L.; Li, G.; Xu, J. Organic-inorganic hybrid antimony(III) halides for second harmonic generation. Cryst. Growth Des. 2022, 22, 6545–6553. [Google Scholar] [CrossRef]
- Halasyamani, P.; Zhang, W. Viewpoint: Inorganic materials for UV and deep-UV nonlinear-optical applications. Inorg. Chem. 2017, 56, 12077–12085. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Yang, Y.; Shao, L.; Zhu, W.; Liu, X.; Hua, B.; Huang, F. Nanoencapsulation-induced second harmonic generation in pillararene-based host-guest complex cocrystals. J. Am. Chem. Soc. 2023, 145, 2870–2876. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Tang, X.; Zhang, Y.; Ren, J.; Wang, S.; Wu, S.; Mi, J.; Huang, Y. Strategy for a rational design of deep-ultraviolet nonlinear optical materials from zeolites. Inorg. Chem. 2023, 62, 15527–15536. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Touma, T.; Nakai, H. Dynamic hyperpolarizability calculations of large systems: The linear-scaling divide-and-conquer approach. J. Chem. Phys. 2012, 136, 084108. [Google Scholar] [CrossRef]
- Manganelli, C.; Pintus, P.; Bonati, C. Modeling of strain-induced Pockels effect in silicon. Opt. Expr. 2015, 23, 28649–28666. [Google Scholar] [CrossRef]
- Ivanova, B. Comment on “Comment on “Crystallographic and theoretical study of the atypical distorted octahedral geometry of the metal chromophore of zinc(II) bis((1R,2R)-1,2-diaminocyclohexane) dinitrate”. J. Mol. Struct. 2023, 1287, 135746. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. Noncentrosymmetric organic crystals of barbiturates as potential nonlinear optical phores: Experimental and theoretical analyses. Chem. Pap. 2019, 73, 2821–2844. [Google Scholar] [CrossRef]
- Weiss, A.; Riegler, E.; Alt, I.; Böhme, H.; Robl, C. Transition metal squarates, I. Chain structures M(C4O4)·4H2O. Z. Naturforschung B 1986, 41, 18–24. [Google Scholar] [CrossRef]
- West, R.; Niu, H. New aromatic anions. VII. Complexes of saquarate ion with some divalent and trivalent metals. J. Am. Chem. Soc. 1963, 85, 2589–2590. [Google Scholar] [CrossRef]
- Jayaramulu, K.; Krishna, K.; George, S.; Eswaramoorthy, M.; Maji, T. Shape assisted fabrication of fluorescent cages of squarate based metal–organic coordination frameworks. Chem. Commun. 2013, 49, 3937–3939. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Zhai, Q. Development of MOF-5-like ultra-microporous metal-squarate frameworks for efficient acetylene storage and separation. J. Mater. Chem. A 2023, 11, 21203–21210. [Google Scholar] [CrossRef]
- Yilmaz, H.; Andac, O.; Gorduk, S. Synthesis, characterization, and hydrogen storage capacities of polymeric squaric acid complexes containing 1-vinylimidazole. Polyhedron 2017, 133, 16–23. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, J.; Shi, Z.; Kuai, Y.; Hu, Z.; Cao, Z.; Li, S. Microwave-assisted in-situ synthesis of low-dimensional perovskites within metal-organic frameworks for optoelectronic applications. Appl. Mater. Today 2024, 40, 102418. [Google Scholar] [CrossRef]
- Seco, J.; Calahorro, A.; Sebastian, E.; Salinas-Castillo, A.; Colacio, E.; Rodriguez-Dieguez, A. Experimental and theoretical study of photoluminescence and magnetic properties of metal–organic polymers based on squarate and tetrazolate moieties containing linkers. New J. Chem. 2015, 39, 9926–9930. [Google Scholar] [CrossRef]
- Stone, J.; Decoteau, E.; Polinski, M. Synthesis and structural characterization of an air and water stable divalent Europium squarate prepared by in situ reduction. J. Solid State Chem. 2021, 297, 122048. [Google Scholar] [CrossRef]
- Mani, C.; Berthold, T.; Fechler, N. Cubism on the nanoscale: From squaric acid to porous carbon tubes. Small 2016, 21, 2906–2912. [Google Scholar] [CrossRef]
- Vatani, P.; Aliannezhadi, M.; Tehrani, F. Improvement of optical and structural properties of ZIF-8 by producing multifunctional Zn/Co bimetallic ZIFs for wastewater treatment from copper ions and dye. Sci. Rep. 2024, 14, 15434. [Google Scholar] [CrossRef]
- Getzner, L.; Paliwoda, D.; Vendier, L.; Lawson-Daku, L.; Rotaru, A.; Molnar, G.; Cobo, S.; Bousseksou, A. Combining electron transfer, spin crossover, and redox properties in metal-organic frameworks. Nat. Commun. 2024, 15, 7192. [Google Scholar] [CrossRef]
- Kenzhebayeva, Y.; Kulachenkov, N.; Rzhevskiy, S.; Slepukhin, P.; Shilovskikh, V.; Efimova, V.; Alekseevskiy, P.; Gor, G.; Emelianova, A.; Shipilovskikh, S.; et al. Light-driven anisotropy of 2D metal-organic framework single crystal for repeatable optical modulation. Commun. Mater. 2024, 5, 48. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, X.; Qiao, X.; Kottilil, D.; Shi, D.; Fan, W.; Yuan, Y.; Yu, X.; Babusenan, A.; Zhang, M.; et al. Tunable nonlinear optical properties based on metal-organic framework single crystals. Adv. Opt. Mater. 2024, 12, 2302405. [Google Scholar] [CrossRef]
- Wang, C.; Chung, W.; Lin, H.; Dai, S.; Shiu, J.; Lee, G.; Sheu, H.; Lee, W. Assembly of two Zinc(II)-squarate coordination polymers with noncovalent and covalent bonds derived from flexible ligands, 1,2-bis(4-pyridyl)ethane (dpe). CrystEngComm 2011, 13, 2130–2136. [Google Scholar] [CrossRef]
- Li, J.; Yin, M.; Li, Y.; Wang, C. Uncommon 3D twofold interpenetrated zinc phosphate consisting of inorganic chains and mixed ligands for highly efficient dye removal ability using its nanosized particles. Inorg. Chem. 2022, 61, 7964–7969. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ke, S.; Hsieh, Y.; Huang, S.; Wang, T.; Lee, G.; Chuang, Y. Water de/adsorption associated with single-crystal-to-single crystal structural transformation of a series of two-dimensional metal-organic frameworks, [M(bipy)(C4O4)(H2O)2]·3H2O (M = Mn, Fe, and Zn, and bipy = 4,4′-bipyridine). J. Chin. Chem. Soc. 2019, 66, 1031–1040. [Google Scholar] [CrossRef]
- Mautner, F.; Fischer, R.; Grant, A.; Romain, D.; Salem, N.; Louka, F.; Massoud, S. Copper(II) and zinc(II) complexes bridged by benzenoid aromatic oxocarbon and dicarboxylate dianions. Polyhedron 2023, 234, 116327. [Google Scholar] [CrossRef]
- Dan, M.; Sivashankar, K.; Cheetham, A.; Rao, C. Amine-templated metal squarates. J. Solid State Chem. 2003, 174, 60–68. [Google Scholar] [CrossRef]
- Basile, M.; Unruh, D.; Streicher, L.; Forbes, T. Spectral analysis of the uranyl squarate and croconate system: Evaluating differences between the solution and solid-state phases. Cryst. Growth Des. 2017, 17, 5330–5341. [Google Scholar] [CrossRef]
- Weiss, A.; Riegler, E.; Robl, C. Ubergangs metallquadratate, III Über die trikline Käfigstruktur des (MC4O4·2H2O)·3 CH3COOH·H2O (M = Zn2+, Mn2+). Z. Naturforschung B 1986, 41, 1333–1336. [Google Scholar] [CrossRef]
- Weiss, A.; Riegler, E.; Robl, C. Transition metal squarates, On the Structure of cubic (MC4O4·2H2O)·CH3COOH.H2O (M = Zn2+, Ni2+). Z. Naturforschung B 1986, 41, 1329–1332. [Google Scholar] [CrossRef]
- Kirchmaier, R.; Altin, E.; Lentz, A. Crystal structure of tetraaqua-2-pyrazine-zinc(II) squarate, [Zn(H2O)4(C4H4N2)](C4O4). Z. Kristallogr.—New Cryst. Struct. 2004, 219, 33–34. [Google Scholar] [CrossRef]
- Ucar, I.; Karabulut, B.; Bulut, A.; Bueyue Kguengoer, O. Synthesis, crystal structure, Cu2+ doped EPR and voltammetric studies of bis[N-(2-hydroxyethyl)ethylenediamine]zinc(II) squarate monohydrate. J. Phys. Chem. Solids 2007, 68, 45–52. [Google Scholar] [CrossRef]
- Bulut, A.; Ucar, L.; Kalyoncu, T.; Yerli, Y.; Bueyuekguengoer, O. Structural and magnetic properties of one-dimensional squarate bridged coordination polymers containing 2-aminomethylpyridine ligand. J. Inorg. Organomet. Polym. 2010, 20, 793–801. [Google Scholar] [CrossRef]
- Wang, C.; Yang, C.; Lee, G.; Tsai, H. Syntheses, structures, and magnetic properties of two 1D, mixed-ligand, metal coordination polymers, [M(C4O4)(dpa)(OH2)] (M = CoII, NiII, and ZnII; dpa = 2,2′-dipyridylamine) and [Cu(C4O4)(dpa)(H2O)]2·(H2O). Eur. J. Inorg. Chem. 2005, 2005, 1334–1342. [Google Scholar] [CrossRef]
- Razavi, S.; Chen, W.; Zhou, H.; Morsali, A. Tuning redox activity in metal–organic frameworks: From structure to application. Coord. Chem. Rev. 2024, 517, 216004. [Google Scholar] [CrossRef]
- Yang, C.; Chuo, C.; Lee, G.; Wang, C. Self-assembly of two mixed-ligands metal-organic coordination polymers. Inorg. Chem. Commun. 2003, 6, 135–140. [Google Scholar] [CrossRef]
- Rostami, A.; Colin, A.; Li, X.; Chudzinski, M.; Lough, A.; Taylor, M. N,N’-diarylsquaramides: General, high-yielding synthesis and applications in colorimetric anion sensing. J. Org. Chem. 2010, 75, 3983–3992. [Google Scholar] [CrossRef]
- Piggot, P.; Seenarine, S.; Hall, L. Complexes of aminosquarate ligands with first-row transition metals and lanthanides: New insights into their hydrolysis. Inorg. Chem. 2007, 46, 5243–5251. [Google Scholar] [CrossRef] [PubMed]
- Meena, M.; Ebinezer, B.; Manikandan, E.; Sundararajan, R.; Shalini, M.; Natarajan, R. Synthesis and optical characterizations of L-phenylalanine lithium sulphate (LPLS) semi-organic single crystal. J. Mater. Sci. Mater. Electron. 2023, 34, 395. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. Stochastic dynamic electrospray ionization mass spectrometric diffusion parameters and 3D structural determination of complexes of AgI-ion—Experimental and theoretical 3 treatment. Int. J. Mol. Liq. 2019, 292, 111307. [Google Scholar] [CrossRef]
- Ivanova, I.; Spiteller, M. Electrospray ionization mass spectrometric solvate cluster and multiply charged ions—A stochastic dynamic approach to 3D structural analysis. SN Appl. Sci. 2020, 2, 731. [Google Scholar] [CrossRef]
- Ivanova, I.; Spiteller, M. Electrospray ionization stochastic dynamic mass spectrometric 3D structural analysis of ZnII-ion containing complexes in solution. Inorg. Nano-Met. Chem. 2022, 52, 1407–1429. [Google Scholar] [CrossRef]
- Khan, S.; Mir, M. Photomechanical properties in metal-organic crystals. Chem. Commun. 2024, 60, 7555–7565. [Google Scholar] [CrossRef]
- Serb, M.; Braun, B.; Oprea, O.; Dumitru, F. Synthesis, crystal structure and thermal decomposition study of new [tetraaqua-bis-(monohydrogensquarate)]zinc(II) complex. Dig. J. Nanomater. Biostruct. 2013, 8, 797–804. [Google Scholar]
- Mondal, A.; Das, D.; Chaudhuri, N. Thermal studies of nickel(II) squarate complexes of triamines in the solid state. J. Therm. Anal. Calorim. 1999, 55, 165–173. [Google Scholar] [CrossRef]
- Maji, T.; Das, D.; Chaudhuri, N. Preparation, characterization and solid state thermal studies of cadmium(II) squarate complexes ofhane-1,2-diamine and its serivatives. J. Therm. Anal. Calorim. 2001, 63, 617–627. [Google Scholar] [CrossRef]
- Das, D.; Ghosh, A.; Chaudhuri, N. Preparation, characterization, and solid state thermal studies of nickel(II) squarate complexes of 1,2-Ethanediamine and its derivatives. Bull. Chem. Soc. Jpn. 1997, 70, 789–797. [Google Scholar] [CrossRef]
- Maji, T.; Das, D.; Chaudhuri, N. Thermal studies of copper(II) squarate complexes of diamines in the solid state. J. Therm. Anal. Calorim. 2002, 68, 319–328. [Google Scholar] [CrossRef]
- Yeşilel, O.; Ölmez, H.; Soylu, S. Synthesis and spectrothermal studies of thermochromic diamine complexes of cobalt(III), nickel(II) and copper(II) squarate. Crystal structure of [Co(en)3](sq)1.5·6H2O. Trans. Met. Chem. 2006, 31, 396–404. [Google Scholar] [CrossRef]
- Schaeffer, H. Squaric acid: Reactions with certain metals. Michrochem. J. 1972, 17, 443–455. [Google Scholar] [CrossRef]
- Moritomo, Y.; Koshihara, S.; Tokura, Y. Asymmetric-to-ceritrosymmetric structure change of molecules in squaric acid crystal: Evidence for pressure-induced change of correlated proton potentlats. J. Chem. Phys. 1990, 93, 5429–5435. [Google Scholar] [CrossRef]
- Lee, C.; Wang, C.; Chen, K.; Lee, G.; Wang, Y. Bond characterization of metal squarate complexes [MII(C4O4)(H2O)4; M = Fe, Co, Ni, Zn. J. Phys. Chem. A 1999, 103, 156–165. [Google Scholar] [CrossRef]
- Robl, C.; Kuhs, W. Hydrogen bonding in the chain-like coordination polymer ZnC4O4·4H2O: A neutron diffraction study. J. Solid State Chem. 1988, 75, 15–20. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. AgI and ZnII complexes with possible application as NLO materials—Crystal structures and properties. Polyhedron 2011, 30, 241–245. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. CCDC 771415: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre (CCDC): Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. CCDC 1917571: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre (CCDC): Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. CCDC 1917547: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre (CCDC): Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 2014, 43, 5700–5734. [Google Scholar] [CrossRef]
- Ojha, G.; Pant, B.; Acharya, J.; Lohani, P.; Park, M. Solvothermal-localized selenylation transformation of cobalt nickel MOFs templated heterointerfaces enriched monoclinic Co3Se4/CoNi2Se4@activated knitted carbon cloth for flexible and bi-axial stretchable supercapacitors. Chem. Eng. J. 2023, 464, 142621. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C.; Na, J.; Hossain, M.; Yan, X.; Zhang, H.; Amin, M.; Qi, J.; Yamauchi, Y.; Li, J. Macroscopic MOF architectures: Effective strategies for practical application in water treatment. Small 2022, 18, 2104387. [Google Scholar] [CrossRef]
- Wright, L.; Wu, F.; Christodoulides, D.; Wise, F. Physics of highly multimode nonlinear optical systems. Nat. Phys. 2022, 18, 1018–1030. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y. Nonlinear optical properties of metal nanoparticles: A review. RSC Adv. 2017, 7, 45129–45144. [Google Scholar] [CrossRef]
- Xue, M.; Zhang, L.; Meng, X.; Yang, J.; He, Y.; Lee, C.; Zhang, J.; Zhang, Q. Ultraviolet nonlinear optical single crystals of a three-dimensional chiral covalent framework containing Te-O-B-O bonds. Angew. Chem. Int. Ed. 2024, 2024, e202412289. [Google Scholar]
- Xu, L.; Zhu, H.; Long, G.; Zhao, J.; Li, D.; Ganguly, R.; Li, Y.; Xu, Q.; Zhang, Q. 4-Diphenylamino-phenyl substituted pyrazine: Nonlinear optical switching by protonation. J. Mater. Chem. C 2015, 3, 9191–9196. [Google Scholar] [CrossRef]
- Spek, A. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Experimental phasing with SHELXC/D/E: Combining chain tracing with density modification. Acta Crysallogr. D 2010, 66, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallogr. A 1990, 46, 467–473. [Google Scholar] [CrossRef]
- Blessing, R. An empirical correction for absorption anisotropy. Acta Crystallogr. A 1995, 51, 33–38. [Google Scholar] [CrossRef]
- Spek, A. An overview of platon/pluton crystal structure validation. In Comprehensive Inorganic Chemistry III, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1–10, pp. 425–444. [Google Scholar]
- XD2016. Available online: https://www.chem.gla.ac.uk/~louis/xd-home/ (accessed on 1 May 2003).
- Momma, K.; Ikeda, T.; Belik, A.; Izumi, F. Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting. Powder Diffr. 2013, 28, 184–192. [Google Scholar] [CrossRef]
- Available online: https://crm2.univ-lorraine.fr/de/die-software/mopro/ (accessed on 1 June 2024).
- Available online: https://www.chem.gla.ac.uk/~louis/software/wingx/ (accessed on 1 July 2003).
- Dunitz, J.; Schomaker, V.; Trueblood, K. Interpretation of atomic displacement parameters from diffraction studies of crystals. J. Phys. Chem. 1988, 92, 856–867. [Google Scholar] [CrossRef]
- Dunitz, J.; Maverick, E.; Trueblood, K. Atomic Motions in Molecular Crystals from Diffraction Measurements. Angew. Chem. Int. Ed. 1988, 27, 880–895. [Google Scholar] [CrossRef]
- Casida, M. Time-dependent density functional response theory for molecules. In Recent Advances in Density Functional Methods; World Scientific: Singapore, 1995; pp. 155–192. [Google Scholar]
- Van Gisbergen, S.; Snijders, J.; Baerends, E. Implementation of time-dependent density functional response equations. Comput. Phys. Comm. 1999, 118, 119–138. [Google Scholar] [CrossRef]
- Hirata, S.; Head-Gordon, M. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 1999, 314, 291–299. [Google Scholar] [CrossRef]
- Kelley, C. Iterative Methods for Optimization; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2009; Volume 18. [Google Scholar]
- Available online: http://de.openoffice.org (accessed on 1 November 2020).
- Madsen, K.; Nielsen, H.; Tingleff, T. Informatics and Mathematical Modelling, 2nd ed.; DTU Press: Lyngby, Denmark, 2004. [Google Scholar]
- Miller, J.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry; Pentice Hall: London, UK, 1988; pp. 1–271. [Google Scholar]
- Taylor, J. Quality Assurance of Chemical Measurements; Lewis Publishers, Inc.: New York, MI, USA, 1987; pp. 1–328. [Google Scholar]
- Schroee, G.; Trenkler, D. Exact and randomization distributions of Kolmogorov–Smirnov tests two or three samples. Comput. Stat. Data Anal. 1995, 20, 185–202. [Google Scholar] [CrossRef]
- Fay, F.; Proschan, M. Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 2010, 4, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Freidlin, B.; Gastwir, J. Should the median test be retired from general use? Am. Stat. 2000, 54, 161–164. [Google Scholar] [CrossRef]
- Brown, M.; Kelley, H.; Galwey, A.; Mohamed, M. A thermoanalytical study of thermal decomposition of silver squarate. Thermochim. Acta 1988, 127, 139–158. [Google Scholar] [CrossRef]
- Galwey, A.; Mohamedt, M.; Brown, M. Thermal decomposition of silver squarate. J. Chem. Soc. Faraday Trans. 1 1988, 84, 57–64. [Google Scholar] [CrossRef]
- Schwartz, L.; Howard, L. Electronic structure of aqueous squaric acid and its anions. J. Phys. Chem. 1973, 77, 314–318. [Google Scholar] [CrossRef]
- Georgopoulos, S.; Diniz, R.; Yoshida, M.; Speziali, N.; dos Santos, H.; Junqueira, G.; de Oliveira, L. Vibrational spectroscopy and aromaticity investigation of squarate salts: A theoretical and experimental approach. J. Mol. Struct. 2006, 794, 63–70. [Google Scholar] [CrossRef]
- Santos, P.; Amaral, J.; de Olivieira, L. Raman spectra of some transition metal squarate and croconate complexes. J. Mol. Struct. 1991, 243, 223–232. [Google Scholar] [CrossRef]
- Buckingham, A.; Long, D. Polarizability and hyperpolarizability. Pilos. Trans. R. Soc. Lond. A 1979, 293, 239–248. [Google Scholar]
- Kongsted, J.; Christiansen, O. Vibrational and thermal effects on the dipole polarizability of methane and carbon tetrachloride from vibrational structure calculations. J. Chem. Phys. 2007, 127, 154315. [Google Scholar] [CrossRef]
- Couling, V.; Shelton, D. Hyperpolarizability dispersion measured for (CH3)2O. J. Chem. Phys. 2015, 143, 224307. [Google Scholar] [CrossRef] [PubMed]
Complex | [Ag(C4O4)O] n | [Ag(C4O4)O] n | [Ag(C4O4)O] n |
CCDC | 771415 | 2387639 | 2387641 |
Single crystal | (2)_1 | (2)_2 | (2)_3 |
Refs. | [53,54] | This work | This work |
Empirical formula | C4AgO5 | C4AgO5 | C4AgO5 |
Moiety formula | C4AgO5 | C4AgO5 | C4AgO5 |
Formula mass | 235.91 | 459.81 | 235.91 |
Crystal system | Monoclinic | Monoclinic | Monoclinic |
Space Group | C2/c | Cc | C2/c |
a [Å] | 13.572(9) | 13.491(11) | 13.594(6) |
b [Å] | 8.229(6) | 8.233(11) | 8.251(3) |
c [Å] | 11.108(7) | 11.038(13) | 11.107(4) |
α [o] | 90.00 | 90.00 | 90.00 |
β [o] | 118.142(17) | 117.94(5) | 118.094(11) |
γ [o] | 90.00 | 90.00 | 90.00 |
V [Å3] | 1093.9(12) | 1083(2) | 1099.0(7) |
Z | 8 | 4 | 8 |
ρ [g·cm−1] | 2.865 | 2.820 | 2.852 |
F000 | 888 | 864 | 888 |
μ(Mo-K) [mm−1] | 3.561 | 3.666 | 3.617 |
T [K] | 199(2) | 300(2) | 300(2) |
θ range | 3.00–25.07 | 3.01–24.94 | 3.00–25.24 |
Refl. collected | 3173 | 1555 | 1655 |
Unique refl. | 951 | 1034 | 963 |
R1[2σ(I)] | 0.0558 | 0.1544 | 0.2323 |
R1 (all data) | 0.0587 | 0.1781 | 0.0944 |
wR2 | 0.1819 | 0.3626 | 0.1044 |
GooF | 0.952 | 2.026 | 1.003 |
Diff. peak/hole [e/Å3] | 2.591/−1.161 | 3.374/−2.879 | 3.344/−1.724 |
Electric dipole moment | |||
[a.u.] | Debye | 10−30 SI | |
μtot | 0.317187 × 10−1 | 0.806208 × 10−1 | 0.268922 |
μx | 0.000000 | 0.000000 | 0.000000 |
μy | 0.000000 | 0.000000 | 0.000000 |
μz | 0.317187 × 10−1 | 0.806208 × 10−1 | 0.268922 |
Dipole polarizability | |||
α(0,0) | [au] | [10−24 esu] | [10−40 SI] |
αiso | 0.425867 × 103 | 0.631070 × 102 | 0.702160 × 102 |
αaniso | 0.986272 × 103 | 0.146150 × 103 | 0.162614 × 103 |
αxx | 0.633700 × 103 | 0.939047 × 102 | 0.104483 × 103 |
αyx | 0.103717 × 103 | 0.153692 × 102 | 0.171006 × 102 |
αyy | 0.154964 × 103 | 0.229634 × 102 | 0.255502 × 102 |
αzx | −0.500754 × 103 | −0.742041 × 102 | −0.825632 × 102 |
αzy | −0.495223 × 102 | −0.733845 × 101 | −0.816513 × 101 |
αzz | 0.488936 × 103 | 0.724529 × 102 | 0.806147 × 102 |
α(−ω;ω) ω = 455.6 nm | [au] | 10−24 esu | 10−40 SI |
αiso | 0.153553 × 103 | 0.227542 × 102 | 0.253175 × 102 |
αaniso | 0.587493 × 103 | 0.870575 × 102 | 0.968645 × 102 |
αxx | 0.327207 × 103 | 0.484871 × 102 | 0.539492 × 102 |
αyx | 0.227125 × 102 | 0.336565 × 101 | 0.374479 × 101 |
αyy | −0.970495 × 102 | −0.143813 × 102 | −0.160013 × 102 |
αzx | −0.241757 × 103 | −0.358247 × 102 | −0.398603 × 102 |
αzy | −0.815340 × 102 | −0.120821 × 102 | −0.134431 × 102 |
αzz | 0.230502 × 103 | 0.341568 × 102 | 0.380046 × 102 |
First dipole hyperpolarizability | |||
β(0;0,0) | [a.u.] | [10−30 esu] | [10−50 SI] |
β|| (z) | 0.450178 × 101 | 0.388919 × 10−1 | 0.144343 × 10−1 |
β_|_(z) | 0.150059 × 101 | 0.129640 × 10−1 | 0.481145 × 10−2 |
βx | −0.369368 × 102 | −0.319105 | −0.118433 |
βy | −0.124310 × 102 | −0.107394 | −0.398583 × 10−1 |
βz | 0.225089 × 102 | 0.194459 | 0.721717 × 10−1 |
β|| | 0.900112 × 101 | 0.777627 × 10−1 | 0.288609 × 10−1 |
βxxx | −0.819435 × 101 | −0.707928 × 10−1 | −0.262740 × 10−1 |
βxxy | −0.923337 × 101 | −0.797692 × 10−1 | −0.296055 × 10−1 |
βyxy | −0.164386 × 101 | −0.142017 × 10−1 | −0.527081 × 10−2 |
βyyy | −0.358041D × 101 | −0.309320 × 10−1 | −0.114801 × 10−1 |
βxxz | 0.736136 | 0.635964 × 10−2 | 0.236032 × 10−2 |
βyxz | −0.210114 × 101 | −0.181522 × 10−1 | −0.673702 × 10−2 |
βyyz | −0.191303 × 101 | −0.165271 × 10−1 | −0.613386 × 10−2 |
βzxz | −0.247405 × 101 | −0.213738 × 10−1 | −0.793269 × 10−2 |
βzyz | 0.867012 × 101 | 0.749031 × 10−1 | 0.277995 × 10−1 |
βzzz | 0.867986 × 101 | 0.749873 × 10−1 | 0.278308 × 10−1 |
β(−ω;ω,0) ω = 455.6 nm | |||
[a.u.] | [10−30 esu] | [10−50 SI] | |
β|| (z) | −0.106836 × 104 | −0.922982 × 101 | −0.342556 × 101 |
β_|_(z) | −0.999635 × 102 | −0.863607 | −0.320519 |
βx | 0.408269 × 104 | 0.352712 × 102 | 0.130906 × 102 |
βy | −0.271454 × 104 | −0.234515 × 102 | −0.870381 × 101 |
βz | −0.534181 × 104 | −0.461491 × 102 | −0.171278 × 102 |
β|| | 0.145013 × 104 | 0.125280 × 102 | 0.464965 × 101 |
βxxx | 0.396853 × 103 | 0.342850 × 101 | 0.127246 × 101 |
βyxx | 0.621301 × 102 | 0.536756 | 0.199212 |
βyyx | −0.322483 × 103 | −0.278600 × 101 | −0.103400 × 101 |
βzxx | −0.327435 × 103 | −0.282878 × 101 | −0.104987 × 101 |
βzyx | −0.113067 × 103 | −0.976813 | −0.362535 |
βzzx | 0.279499 × 103 | 0.241465 × 101 | 0.896175 |
βxxy | −0.425822 × 103 | −0.367877 × 101 | −0.136534 × 101 |
βyxy | 0.705009 × 103 | 0.609073 × 101 | 0.226051 × 101 |
βyyy | −0.423235 × 103 | −0.365642 × 101 | −0.135704 × 101 |
βzxy | 0.496533 × 103 | 0.428966 × 101 | 0.159207 × 101 |
βzyy | −0.962529 × 103 | −0.831550 × 101 | −0.308622 × 101 |
βzzy | −0.752474 × 103 | −0.650079 × 101 | −0.241270 × 101 |
βxxz | −0.843863 × 103 | −0.729032 × 101 | −0.270573 × 101 |
βyxz | 0.220077 × 103 | 0.190130 × 101 | 0.705647 |
βyyz | 0.322371 × 103 | 0.278504 × 101 | 0.103364 × 101 |
βzxz | 0.762547 × 103 | 0.658781 × 101 | 0.244500 × 101 |
βzyz | −0.195401 × 103 | −0.168811 × 101 | −0.626526 |
βzzz | −0.746798 × 103 | −0.645175 × 101 | −0.239450 × 101 |
T [K] | Level of Theory | X [Debye] | Y [Debye] | Z [Debye] |
---|---|---|---|---|
0 | STO-3G | − | −1.4453 | 0.0007 |
298 | −2.7078 | −1.4347 | 0.0007 | |
0 | LANL2DZ | −11.2328 | −0.6061 | 0.0003 |
298 | −11.2407 | −0.6120 | 0.0003 |
Harmonic Value | SPT Anharmonic Value | |||
---|---|---|---|---|
T [K] | 298.15 | |||
LANL2DZ | STO-3G | LANL2DZ | STO-3G | |
Qvib | 0.13987 × 10−16 | 0.26471 × 10−17 | 0.18714 × 10−16 | 0.35544 × 10−17 |
QZvib | 0.11518 × 102 | 0.36366 × 102 | 0.12179 × 102 | 0.39512 × 102 |
Sp.Heat(V) J/(mol K) | 0.85862 × 102 | 0.10169 × 103 | 0.86655 × 102 | 0.10246 × 103 |
Sp.Heat(P) J/(mol K) | 0.94177 × 102 | 0.11000 × 103 | 0.94969 × 102 | 0.11077 × 103 |
T [K] | 500.00 | |||
Qvib | 0.25010 × 10−8 | 0.30844 × 10−8 | 0.31466 × 10−8 | 0.39466 × 10−8 |
QZvib | 0.12056 × 103 | 0.79637 × 103 | 0.13182 × 10−3 | 0.89811 × 103 |
Sp.Heat(V) J/(mol K) | 0.12028 × 103 | 0.13490 × 103 | 0.12111 × 103 | 0.13576 × 103 |
Sp.Heat(P) J/(mol K) | 0.12860 × 103 | 0.14322 × 103 | 0.12943 × 103 | 0.14408 × 103 |
T [K] | 1000.00 | |||
Qvib | 0.13402 | 0.11370 × 101 | 0.16589 | 0.14477 × 101 |
QZvib | 0.29425 × 105 | 0.57772 × 106 | 0.33955 × 105 | 0.69061 × 106 |
Sp.Heat(V) J/(mol K) | 0.15865 × 103 | 0.17292 × 103 | 0.15915 × 103 | 0.17351 × 103 |
Sp.Heat(P) J/(mol K) | 0.16697 × 103 | 0.18123 × 103 | 0.16746 × 103 | 0.18183 × 103 |
T [K] | 1500.00 | |||
Qvib | 0.76657 × 103 | 0.16686 × 105 | 0.95443 × 103 | 0.21493 × 105 |
QZvib | 0.27899 × 107 | 0.10625 × 109 | 0.33148 × 107 | 0.13122 × 109 |
Sp.Heat(V) J/(mol K) | 0.17088 × 103 | 0.18601 × 103 | 0.17116 × 103 | 0.18636 × 103 |
Sp.Heat(P) J/(mol K) | 0.17919 × 103 | 0.19432 × 103 | 0.17947 × 103 | 0.19467 × 103 |
T [K] | 2000.00 | |||
Qvib | 0.25484 × 106 | 0.10363 × 108 | 0.31918 × 106 | 0.13476 × 108 |
QZvib | 0.11941 × 109 | 0.73870 × 1010 | 0.14440 × 109 | 0.93079 × 1010 |
Sp.Heat(V) J/(mol K) | 0.17586 × 103 | 0.19152 × 103 | 0.17603 × 103 | 0.19174 × 103 |
Sp.Heat(P) J/(mol K) | 0.18417 × 103 | 0.19984 × 103 | 0.18434 × 103 | 0.20006 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, B. Crystallographic and Optical Spectroscopic Study of Metal–Organic 2D Polymeric Crystals of Silver(I)– and Zinc(II)–Squarates. Crystals 2024, 14, 905. https://doi.org/10.3390/cryst14100905
Ivanova B. Crystallographic and Optical Spectroscopic Study of Metal–Organic 2D Polymeric Crystals of Silver(I)– and Zinc(II)–Squarates. Crystals. 2024; 14(10):905. https://doi.org/10.3390/cryst14100905
Chicago/Turabian StyleIvanova, Bojidarka. 2024. "Crystallographic and Optical Spectroscopic Study of Metal–Organic 2D Polymeric Crystals of Silver(I)– and Zinc(II)–Squarates" Crystals 14, no. 10: 905. https://doi.org/10.3390/cryst14100905
APA StyleIvanova, B. (2024). Crystallographic and Optical Spectroscopic Study of Metal–Organic 2D Polymeric Crystals of Silver(I)– and Zinc(II)–Squarates. Crystals, 14(10), 905. https://doi.org/10.3390/cryst14100905