Threshold Switching and Resistive Switching in SnO2-HfO2 Laminated Ultrathin Films
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Film Growth and Composition
3.2. Film Structure
3.3. Electrical Properties
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khoshman, J.M.; Khan, A.; Kordesch, M.E. Amorphous hafnium oxide thin films for antireflection optical coatings. Surf. Coat. Technol. 2008, 202, 2500–2502. [Google Scholar] [CrossRef]
- Khoshman, J.M.; Kordesch, M.E. Optical properties of a-HfO2 thin films. Surf. Coat. Technol. 2006, 201, 3530–3535. [Google Scholar] [CrossRef]
- Wiatrowski, A.; Obstarczyk, A.; Mazur, M.; Kaczmarek, D.; Wojcieszak, D. Characterization of HfO2 optical coatings deposited by MF magnetron sputtering. Coatings 2019, 9, 106. [Google Scholar] [CrossRef]
- Capone, S.; Leo, G.; Rella, R.; Siciliano, P.; Vasanelli, L.; Alvisi, M.; Mirenghi, L.; Rizzo, A. Physical characterization of hafnium oxide thin films and their application as gas sensing devices. J. Vac. Sci. Technol. A 1998, 16, 3564–3568. [Google Scholar] [CrossRef]
- Avila-García, A.; García-Hipólito, M. Characterization of gas sensing HfO2 coatings synthesized by spray pyrolysis technique. Sens. Actuators B Chem. 2008, 133, 302–307. [Google Scholar] [CrossRef]
- Karaduman, I.; Acar, S. The gas sensing properties of hafnium oxide thin films depending on the annealing environment. Mod. Phys. Lett. B 2017, 31, 1750284. [Google Scholar] [CrossRef]
- Tiwari, K.; Sharma, S.C.; Hozhabri, N. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors. Aip Adv. 2016, 6, 045217. [Google Scholar] [CrossRef]
- He, G.; Zhu, L.Q.; Liu, M.; Fang, Q.; Zhang, L.D. Optical and electrical properties of plasma-oxidation derived HfO2 gate dielectric films. Appl. Surf. Sci. 2007, 253, 3413–3418. [Google Scholar] [CrossRef]
- Gusev, E.P.; Cabral Jr, C.; Copel, M.; D’emic, C.; Gribelyuk, M. Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications. Microelectron. Eng. 2003, 69, 145–151. [Google Scholar] [CrossRef]
- Huang, A.P.; Yang, Z.C.; Chu, P.K. Advances in Solid State Circuits Technologies; InTech: Rijeka, Croatia, 2010; Hafnium-based high-k gate dielectrics; pp. 333–350. ISBN 978-953-307-086-5. [Google Scholar]
- Wang, Y.; Liu, Q.; Long, S.; Wang, W.; Wang, Q.; Zhang, M.; Zhang, S.; Li, Y.; Zuo, Q.; Yang, J.; et al. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology 2009, 21, 045202. [Google Scholar] [CrossRef]
- Liu, C.F.; Tang, X.G.; Wang, L.Q.; Tang, H.; Jiang, Y.P.; Liu, Q.X.; Li, W.H.; Tang, Z.H. Resistive switching characteristics of HfO2 thin films on mica substrates prepared by sol-gel process. Nanomaterials 2019, 9, 1124. [Google Scholar] [CrossRef] [PubMed]
- Ramadoss, A.; Krishnamoorthy, K.; Kim, S.J. Resistive switching behaviors of HfO2 thin films by sol–gel spin coating for nonvolatile memory applications. Appl. Phys. Express 2012, 5, 085803. [Google Scholar] [CrossRef]
- Mueller, S.; Mueller, J.; Singh, A.; Riedel, S.; Sundqvist, J.; Schroeder, U.; Mikolajick, T. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 2012, 22, 2412–2417. [Google Scholar] [CrossRef]
- Sang, X.; Grimley, E.D.; Schenk, T.; Schroeder, U.; LeBeau, J.M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 2015, 106, 162905. [Google Scholar] [CrossRef]
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U.J.A.P.L. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903. [Google Scholar] [CrossRef]
- Singha, K.K.; Singh, P.P.; Narzary, R.; Mondal, A.; Gupta, M.; Sathe, V.G.; Kumar, D.; Srivastava, S.K. Crystal Structure, Raman Spectroscopy and Optical Property Study of Mg-Doped SnO2 Compounds for Optoelectronic Devices. Crystals 2023, 13, 932. [Google Scholar] [CrossRef]
- Sberveglieri, G. Classical and novel techniques for the preparation of SnO2 thin-film gas sensors. Sens. Actuators B Chem. 1992, 6, 239–247. [Google Scholar] [CrossRef]
- Oyabu, T. Sensing characteristics of SnO2 thin film gas sensor. J. Appl. Phys. 1982, 53, 2785–2787. [Google Scholar] [CrossRef]
- Lee, S.W.; Tsai, P.P.; Chen, H. Comparison study of SnO2 thin-and thick-film gas sensors. Sens. Actuators B Chem. 2000, 67, 122–127. [Google Scholar] [CrossRef]
- Berneschi, S.; Bhaktha, S.N.B.; Chiappini, A.; Chiasera, A.; Ferrari, M.; Kinowski, C.; Turrell, S.; Trono, C.; Brenci, M.; Cacciari, I.; et al. Highly photorefractive Eu3+ activated sol-gel SnO2-SnO2 thin film waveguides. Integr. Opt. Devices Mater. Technol. 2010, 7604, 246–251. [Google Scholar] [CrossRef]
- Tran, T.N.L.; Armellini, C.; Varas, S.; Carpentiero, A.; Chiappini, A.; Głuchowski, P.; Iacob, E.; Ferrari, M. Assessment of SnO2-Nanocrystal-Based Luminescent Glass-Ceramic Waveguides for Integrated Photonics. Ceram. Int. 2021, 47, 5534–5541. [Google Scholar] [CrossRef]
- Qadri, S.B.; Kim, H.; Khan, H.R.; Piqué, A.; Horwitz, J.S.; Chrisey, D.; Kim, W.J.; Skelton, E.F. Transparent Conducting Films of In2O3–ZrO2, SnO2–ZrO2 and ZnO–ZrO2. Thin Solid Films 2000, 377, 750–754. [Google Scholar] [CrossRef]
- Manjula, N.; Selvan, G. Magnetic and Antibacterial Properties of Zr-Doped SnO2 Nanopowders. J. Mater. Sci. Mater. Electron. 2017, 28, 15056–15064. [Google Scholar] [CrossRef]
- Nagashima, K.; Yanagida, T.; Oka, K.; Kawai, T. Unipolar Resistive Switching Characteristics of Room Temperature Grown SnO2 Thin Films. Appl. Phys. Lett. 2009, 94, 242902. [Google Scholar] [CrossRef]
- Almeida, S.; Aguirre, B.; Marquez, N.; McClure, J.; Zubia, D. Resistive Switching of SnO2 Thin Films on Glass Substrates. Integr. Ferroelectr. 2011, 126, 117–124. [Google Scholar] [CrossRef]
- Kalateh, A.; Jalali, A.; Kamali Ashtiani, M.J.; Mohammadimasoudi, M.; Bastami, H.; Mohseni, M. Resistive Switching Transparent SnO2 Thin Film Sensitive to Light and Humidity. Sci. Rep. 2023, 13, 20036. [Google Scholar] [CrossRef]
- Ganchev, M.; Katerski, A.; Stankova, S.; Eensalu, J.S.; Terziyska, P.; Gergova, R.; Popkirov, G.; Vitanov, P. Spin-Coating of SnO2 Thin Films. J. Phys. Conf. Ser. 2019, 1186, 012027. [Google Scholar] [CrossRef]
- Kim, H.; Auyeung, R.C.Y.; Piqué, A. Transparent Conducting F-Doped SnO2 Thin Films Grown by Pulsed Laser Deposition. Thin Solid Films 2008, 516, 5052–5056. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, Z.; Yin, X.; Chen, C.; Fan, Z.; Qin, M.; Zeng, M.; Zhou, Z.; Hu, X.; Gao, X. Ferroelectricity in Dopant-Free HfO2 Thin Films Prepared by Pulsed Laser Deposition. J. Mater. 2022, 8, 311–318. [Google Scholar] [CrossRef]
- Alnuwaiser, M.A.; Javaid, K.; Jacob, J.; Saleem, M.; Liang, L.; Cao, H.; Amami, M.; Li, Y.; Li, D. Annealing Induced Morphology Evolution and Phase Transition in SnOx Thin Films Grown by E-Beam Evaporation Method. Inorg. Chem. Commun. 2022, 140, 109473. [Google Scholar] [CrossRef]
- Alvisi, M.; De Tomasi, F.; Perrone, M.R.; Protopapa, M.L.; Rizzo, A.; Sarto, F.; Scaglione, S. Laser Damage Dependence on Structural and Optical Properties of Ion-Assisted HfO2 Thin Films. Thin Solid Films 2001, 396, 44–52. [Google Scholar] [CrossRef]
- Gubbins, M.A.; Casey, V.; Newcomb, S.B. Nanostructural Characterisation of SnO2 Thin Films Prepared by Reactive RF Magnetron Sputtering of Tin. Thin Solid Films 2002, 405, 270–275. [Google Scholar] [CrossRef]
- Martínez, F.L.; Toledano-Luque, M.; Gandía, J.J.; Cárabe, J.; Bohne, W.; Röhrich, J.; Strub, E.; Mártil, I. Optical Properties and Structure of HfO2 Thin Films Grown by High Pressure Reactive Sputtering. J. Phys. D Appl. Phys. 2007, 40, 5256. [Google Scholar] [CrossRef]
- Gordillo, G.; Moreno, L.C.; De la Cruz, W.; Teheran, P. Preparation and Characterization of SnO2 Thin Films Deposited by Spray Pyrolysis from SnCl2 and SnCl4 Precursors. Thin Solid Films 1994, 252, 61–66. [Google Scholar] [CrossRef]
- Jeong, J.; Choi, S.-P.; Chang, C.I.; Shin, D.C.; Park, J.S.; Lee, B.T.; Park, Y.-J.; Song, H.-J. Photoluminescence Properties of SnO2 Thin Films Grown by Thermal CVD. Solid State Commun. 2003, 127, 595–597. [Google Scholar] [CrossRef]
- Park, J.; Park, B.K.; Cho, M.; Hwang, C.S.; Oh, K.; Yang, D.Y. Chemical Vapor Deposition of HfO2 Thin Films Using a Novel Carbon-Free Precursor: Characterization of the Interface with the Silicon Substrate. J. Electrochem. Soc. 2001, 149, G89. [Google Scholar] [CrossRef]
- Nazarov, D.V.; Bobrysheva, N.P.; Osmolovskaya, O.M.; Osmolovsky, M.G.; Smirnov, V.M. Atomic Layer Deposition of Tin Dioxide Nanofilms: A Review. Rev. Adv. Mater. Sci. 2015, 40, 262–275. [Google Scholar]
- Choi, J.H.; Mao, Y.; Chang, J.P. Development of Hafnium-Based High-k Materials—A Review. Mater. Sci. Eng. R Rep. 2011, 72, 97–136. [Google Scholar] [CrossRef]
- Ismail, M.; Mahata, C.; Kang, M.; Kim, S. SnO2-Based Memory Device with Filamentary Switching Mechanism for Advanced Data Storage and Computing. Nanomaterials 2023, 13, 2603. [Google Scholar] [CrossRef]
- Yun, M.J.; Kim, K.H.; Bea, D.; Jung, J.; Kim, S.; Kim, H.-D. Improved Resistive Switching of SnO2-Based Resistive Random Access Memory Devices Using Post Microwave Treatment. J. Electr. Eng. Technol. 2021, 16, 1011–1017. [Google Scholar] [CrossRef]
- Dastgeer, G.; Afzal, A.M.; Aziz, J.; Hussain, S.; Jaffery, S.H.A.; Kim, D.; Imran, M.; Assiri, M.A. Flexible Memory Device Composed of Metal-Oxide and Two-Dimensional Material (SnO2/WTe2) Exhibiting Stable Resistive Switching. Materials 2021, 14, 7535. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, W.; Kashir, A.; Kamba, S. Hafnium Oxide (HfO2)—A Multifunctional Oxide: A Review on the Prospect and Challenges of Hafnium Oxide in Resistive Switching and Ferroelectric Memories. Small 2022, 18, 2107575. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Liu, H.; Wang, S.; Zhang, S. Modeling and Simulation of Hafnium Oxide RRAM Based on Oxygen Vacancy Conduction. Crystals 2021, 11, 1462. [Google Scholar] [CrossRef]
- Chen, W.-C.; Qin, S.; Yu, Z.; Wong, H.-S.P. Reduced HfO2 Resistive Memory Variability by Inserting a Thin SnO2 as Oxygen Stopping Layer. IEEE Electron Device Lett. 2021, 42, 1778–1781. [Google Scholar] [CrossRef]
- Yesibolati, N.; Shahid, M.; Chen, W.; Hedhili, M.N.; Reuter, M.C.; Ross, F.M.; Alshareef, H.N. SnO2 Anode Surface Passivation by Atomic Layer Deposited HfO2 Improves Li-Ion Battery Performance. Small 2014, 10, 2849–2858. [Google Scholar] [CrossRef]
- Yen, T.J.; Chin, A.; Gritsenko, V. High-Performance Top-Gate Thin-Film Transistor with an Ultra-Thin Channel Layer. Nanomaterials 2020, 10, 2145. [Google Scholar] [CrossRef]
- Avis, C.; Billah, M.M.; Kim, Y.G.; Siddik, A.B.; Jang, J. Analysis of the Solution-Processed a-SnOx and HfO2 Interface for Applications in Thin-Film Transistors. ACS Appl. Electron. Mater. 2021, 3, 651–657. [Google Scholar] [CrossRef]
- Chen, M.-L.; Sun, X.; Liu, H.; Wang, H.; Zhu, Q.; Wang, S.; Du, H.; Dong, B.; Zhang, J.; Sun, Y.; et al. A FinFET with One Atomic Layer Channel. Nat. Commun. 2020, 11, 1205. [Google Scholar] [CrossRef]
- Schilirò, E.; Panasci, S.E.; Mio, A.M.; Nicotra, G.; Agnello, S.; Pecz, B.; Radnoczi, G.Z.; Deretzis, I.; La Magna, A.; Roccaforte, F.; et al. Direct Atomic Layer Deposition of Ultra-Thin Al2O3 and HfO2 Films on Gold-Supported Monolayer MoS2. Appl. Surf. Sci. 2023, 630, 157476. [Google Scholar] [CrossRef]
- Li, Y.; Tang, J.; Gao, B.; Yao, J.; Fan, A.; Yan, B.; Yang, Y.; Xi, Y.; Li, Y.; Li, J.; et al. Monolithic Three-Dimensional Integration of RRAM-Based Hybrid Memory Architecture for One-Shot Learning. Nat. Commun. 2023, 14, 7140. [Google Scholar] [CrossRef]
- Arroval, T.; Aarik, L.; Rammula, R.; Kruusla, V.; Aarik, J. Effect of Substrate-Enhanced and Inhibited Growth on Atomic Layer Deposition and Properties of Aluminum–Titanium Oxide Films. Thin Solid Films 2016, 600, 119–125. [Google Scholar] [CrossRef]
- Granneman, E.; Fischer, P.; Pierreux, D.; Terhorst, H.; Zagwijn, P. Batch ALD: Characteristics, Comparison with Single Wafer ALD, and Examples. Surf. Coat. Technol. 2007, 201, 8899–8904. [Google Scholar] [CrossRef]
- Zagwijn, P.M.; Verweij, W.; Pierreux, D.; Adjeroud, N.; Bankras, R.; Oosterlaken, E.; Snijders, G.J.; van den Hout, M.; Fischer, P.; Wilhelm, R.; et al. Novel Batch Titanium Nitride CVD Process for Advanced Metal Electrodes. ECS Trans. 2008, 13, 459–468. [Google Scholar] [CrossRef]
- Aarik, L.; Arroval, T.; Mändar, H.; Rammula, R.; Aarik, J. Influence of Oxygen Precursors on Atomic Layer Deposition of HfO2 and Hafnium-Titanium Oxide Films: Comparison of O3− and H2O-Based Processes. Appl. Surf. Sci. 2020, 530, 147229. [Google Scholar] [CrossRef]
- Kalam, K.; Ritslaid, P.; Käämbre, T.; Tamm, A.; Kukli, K. Properties of Tin Oxide Films Grown by Atomic Layer Deposition from Tin Tetraiodide and Ozone. Beilstein J. Nanotechnol. 2023, 14, 1085–1092. [Google Scholar] [CrossRef]
- Lanza, M.; Wong, H.-S.P.; Pop, E.; Ielmini, D.; Strukov, D.; Regan, B.C.; Larcher, L.; Villena, M.A.; Yang, J.J.; Xia, Q.; et al. Recommended Methods to Study Resistive Switching Devices. Adv. Electron. Mater. 2019, 5, 1800143. [Google Scholar] [CrossRef]
- Shi, L.; Zheng, G.; Tian, B.; Dkhil, B.; Duan, C. Research Progress on Solutions to the Sneak Path Issue in Memristor Crossbar Arrays. Nanoscale Adv. 2020, 2, 1811–1827. [Google Scholar] [CrossRef]
- Sonde, S.; Chakrabarti, B.; Liu, Y.; Sasikumar, K.; Lin, J.; Stan, L.; Divan, R.; Chaudhuri, J.; Sbrockey, N.; Weiss, D.; et al. Silicon Compatible Sn-Based Resistive Switching Memory. Nanoscale 2018, 10, 9441–9449. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalam, K.; Aan, M.-E.; Merisalu, J.; Otsus, M.; Ritslaid, P.; Kukli, K. Threshold Switching and Resistive Switching in SnO2-HfO2 Laminated Ultrathin Films. Crystals 2024, 14, 909. https://doi.org/10.3390/cryst14100909
Kalam K, Aan M-E, Merisalu J, Otsus M, Ritslaid P, Kukli K. Threshold Switching and Resistive Switching in SnO2-HfO2 Laminated Ultrathin Films. Crystals. 2024; 14(10):909. https://doi.org/10.3390/cryst14100909
Chicago/Turabian StyleKalam, Kristjan, Mark-Erik Aan, Joonas Merisalu, Markus Otsus, Peeter Ritslaid, and Kaupo Kukli. 2024. "Threshold Switching and Resistive Switching in SnO2-HfO2 Laminated Ultrathin Films" Crystals 14, no. 10: 909. https://doi.org/10.3390/cryst14100909
APA StyleKalam, K., Aan, M. -E., Merisalu, J., Otsus, M., Ritslaid, P., & Kukli, K. (2024). Threshold Switching and Resistive Switching in SnO2-HfO2 Laminated Ultrathin Films. Crystals, 14(10), 909. https://doi.org/10.3390/cryst14100909