Influence of Ionic Liquids on the Functionality of Optoelectronic Devices Employing CsPbBr3 Single Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Devices
2.4. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Fernández, I.; Valli, D.; Wang, C.; Samanta, S.; Okamoto, T.; Huang, Y.; Sun, K.; Liu, Y.; Chirvony, V.S.; Patra, A.; et al. Lead-Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospective. Adv. Funct. Mater. 2024, 34, 2307896. [Google Scholar] [CrossRef]
- Gallop, N.P.; Maslennikov, D.; Mondal, N.; Goetz, K.P.; Dai, Z.; Schankler, A.M.; Sung, W.; Nihonyanagi, S.; Tahara, T.; Bodnarchuk, M.I.; et al. Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance. Nat. Mater. 2023, 23, 88. [Google Scholar] [CrossRef] [PubMed]
- Bechir, M.B.; Alresheedi, F. Electrical and optical investigations lead-free Cesium Bismuth iodide single crystal. Opt. Mater. 2024, 147, 114621. [Google Scholar] [CrossRef]
- Bechir, M.B.; Znaidia, S. Understanding the polaron behavior in Cs2CuSbCl6 halide double perovskite. Phys. Chem. Chem. Phys. 2023, 25, 19684. [Google Scholar] [CrossRef]
- Niu, G.; Jiang, J.; Wang, X.; Che, L.; Sui, L.; Wu, G.; Yuan, K.; Yang, X. Time-Resolved Dynamics of Metal Halide Perovskite under High Pressure: Recent Progress and Challenges. J. Phys. Chem. Lett. 2024, 15, 1623. [Google Scholar] [CrossRef]
- Bechir, M.B.; Alresheedi, F. Interpretation of dielectric behavior and polaron hopping in lead-free antimony-based double perovskite. RSC Adv. 2023, 13, 34703. [Google Scholar] [CrossRef]
- Hieulle, J.; Krishna, A.; Boziki, A.; Audinot, J.; Farooq, M.; Machado, J.F.; Mladenović, M.; Phirke, H.; Singh, A.; Wirtz, T.; et al. Understanding and decoupling the role of wavelength and defects in light-induced degradation of metal-halide perovskites. Energy Environ. Sci. 2024, 17, 284. [Google Scholar] [CrossRef]
- Emmanuel, M.; Hao, H.; Liu, H.; Jan, A.; Alresheedi, F. Significantly enhanced energy storage density of NNT ceramics using aliovalent Dy3+ dopant. ACS Sustain. Chem. Eng. 2021, 9, 5849–5859. [Google Scholar] [CrossRef]
- Liu, C.; Huang, W.; Liu, R. Stable glass-protected CsPbX3 (X = Cl, Br, and I) perovskite quantum dot and their applications in backlight LED. Prog. Mater. Sci. 2024, 143, 101243. [Google Scholar] [CrossRef]
- Alresheedi, F.; Hcini, S.; Bouazizi, M.L.; Boudard, M.; Dhahri, A. Synthesis and study of impendence spectroscopy properties of La0.6Ca0.2Na0.2MnO3 manganite perovskite prepared using sol–gel method. J. Mater. Sci. Mater. Electron. 2020, 31, 8248–8257. [Google Scholar] [CrossRef]
- Wang, H.; Du, Z.; Jiang, X.; Cao, S.; Zou, B.S.; Zheng, J.; Zhao, J. Ultrastable Photodetectors Based on Blue CsPbBr3 Perovskite Nanoplatelets via a Surface Engineering Strategy. ACS Appl. Mater. Interfaces 2024, 16, 11694. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.; He, C.; Yang, X.; Lu, X.; Liu, X.; Ren, S.; Yi, S.; Chen, L.; Wu, H.; Zhang, G.; et al. Emerging New-Generation Detecting and Sensing of Metal Halide Perovskites. Adv. Electron. Mater. 2022, 8, 2101204. [Google Scholar] [CrossRef]
- Manan, A.; Rehman, M.U.; Faisal, S.; Ullah, A.; Ghazi, Z.A.; Khan, M.A.; Ahmad, A.S.; Alresheedi, F.; Khan, M.A. Simultaneously achievement of high recoverable energy density and efficiency in sodium niobate-based ceramics. J. Mater. Sci. Mater. Electron. 2022, 33, 22208–22216. [Google Scholar] [CrossRef]
- Alresheedi, F. Structure and spectroscopic ellipsometry studies of nanocrystalline Dy2O3 thin films deposited on Al2O3 wafers by electron beam evaporation technique. J. Mater. Res. Technol. 2021, 12, 2104–2113. [Google Scholar] [CrossRef]
- Li, H.; Yu, H.; Wu, D.; Sun, X.; Pan, L. Recent advances in bioinspired vision sensor arrays based on advanced optoelectronic materials. APL Mater. 2023, 11, 080601. [Google Scholar] [CrossRef]
- Alresheedi, F. Superior resistive switching performance in SnO2 nanoparticles embedded TiO2 nanorods-based thin films. Ceram. Int. 2023, 49, 19505–19512. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, D.; Costa, R.D. Recent progress on synthesis, characterization, and applications of metal halide perovskites@ metal oxide. Adv. Funct. Mater. 2021, 31, 2104634. [Google Scholar] [CrossRef]
- Zhumekenov, A.A.; Burlakov, V.M.; Saidaminov, M.I.; Alofi, A.S.; Haque, A.; Türedi, B.; Davaasuren, B.; Dursun, İ.; Cho, N.; El-Zohry, A.M.; et al. The role of surface tension in the crystallization of metal halide perovskites. ACS Energy Lett. 2017, 2, 1782. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Yang, Z.; Yang, D.; Ren, X.; Xu, H.; Yang, Z.; Liu, S. 20-mm-Large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 2016, 4, 1829. [Google Scholar] [CrossRef]
- Bechir, M.B.; Alresheedi, F. Growth methods’ effect on the physical characteristics of CsPbBr3 single crystal. Phys. Chem. Chem. Phys. 2024, 26, 1274. [Google Scholar] [CrossRef]
- Li, W.; Rao, H.; Chen, B.; Wang, X.; Kuang, D. A formamidinium–methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability. J. Mater. Chem. A Mater. Energy Sustain. 2017, 5, 19431. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, H.; Yuan, H.; Yang, Z.; Fan, J.; Kim, J.; Voznyy, O.; Gong, X.; Quan, L.N.; Tan, C.; et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 2018, 9, 1607. [Google Scholar] [CrossRef]
- Nayak, P.K.; Moore, D.T.; Wenger, B.; Nayak, S.; Haghighirad, A.A.; Fineberg, A.; Noel, N.K.; Reid, O.G.; Rumbles, G.; Kukura, P.; et al. Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nat. Commun. 2016, 7, 13303. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhu, X.; Yang, Z.; Ke, W.; Feng, J.; Ren, X.; Zhao, K.; Liu, M.; Kanatzidis, M.G.; et al. Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Sci. Adv. 2021, 7, eabc8844. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, X.; Fang, Y.; Zhou, Y.; Ni, Z.; Xiao, X.; Chen, S.; Huang, J. Ligand assisted growth of perovskite single crystals with low defect density. Nat. Commun. 2021, 12, 1686. [Google Scholar] [CrossRef]
- Wang, F.; Ge, C.; Duan, D.; Lin, H.; Li, L.; Naumov, P.; Hu, H. Recent progress in ionic liquids for stability engineering of perovskite solar cells. Small Struct. 2022, 3, 2200048. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Li, N.; Hu, M.; Raga, S.R.; Jiang, Y.; Wang, C.; Zhang, X.; Lira-Cantú, M.; Huang, F.; et al. Ionic liquid stabilized perovskite solar modules with power conversion efficiency exceeding 20%. Adv. Funct. Mater. 2022, 19, 2204396. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhao, K.; Yang, Z.; Feng, J.; Zhang, X.; Wang, K.; Meng, L.; Ye, H.; Liu, M.; et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 2018, 30, 1707314. [Google Scholar] [CrossRef]
- Zia, W.; Aranda, C.; Pospı, J.; Rai, M.; Momblona, C.; Gorji, S.; Muñoz-Matutano, G.; Saliba, M. Impact of Low-Temperature Seed-Assisted Growth on the Structural and Optoelectronic Properties of MAPbBr3 Single Crystals. Chem. Mater. 2023, 35, 5458. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Yang, Z.; Feng, J.; Xu, Z.; Li, Q.; Hu, M.; Ye, H.; Zhang, X.; Liu, M.; et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Mater. Today 2019, 22, 67. [Google Scholar] [CrossRef]
- Cho, Y.; Jung, H.Y.; Kim, Y.S.; Kim, Y.; Park, J.; Yoon, S.; Lee, Y.; Cheon, M.; Jeong, S.Y.; Jo, W. High speed growth of MAPbBr3 single crystals via low-temperature inverting solubility: Enhancement of mobility and trap density for photodetector applications. Nanoscale 2021, 13, 8275. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, T.; Fadaei-Tirani, F.; Scopelliti, R.; Nazeeruddin, M.K.; Zhu, D.; Dyson, P.J.; Fei, Z. The chemistry of the passivation mechanism of perovskite films with ionic liquids. Inorg. Chem. 2022, 61, 5010. [Google Scholar] [CrossRef]
- Amari, S.; Verilhac, J.; D’Aillon, E.G.; Ibanez, A.; Zaccaro, J. Optimization of the growth conditions for high quality CH3NH3PbBr3 hybrid perovskite single crystals. Cryst. Growth Des. 2020, 20, 1665. [Google Scholar] [CrossRef]
- Mahapatra, A.; Prochowicz, D.; Kruszyńska, J.; Satapathi, S.; Akın, S.; Kumari, H.; Kumar, P.; Fazel, Z.; Tavakoli, M.M.; Yadav, P. Effect of bromine doping on the charge transfer, ion migration and stability of the single crystalline MAPb (BrxI1−x)3 photodetector. J. Mater. Chem. C 2021, 9, 15189. [Google Scholar] [CrossRef]
- Kalam, A.; Runjhun, R.; Mahapatra, A.; Tavakoli, M.M.; Trivedi, S.; Dastjerdi, H.T.; Kumar, P.; Lewiński, J.; Pandey, M.K.; Prochowicz, D.; et al. Interpretation of resistance, capacitance, defect density, and activation energy levels in single-crystalline MAPbI3. J. Phys. Chem. C 2020, 124, 3496. [Google Scholar] [CrossRef]
- Murali, B.; Yengel, E.; Yang, C.; Peng, W.; Alarousu, E.; Bakr, O.M.; Mohammed, O.F. The surface of hybrid perovskite crystals: A boon or bane. ACS Energy Lett. 2017, 2, 846. [Google Scholar] [CrossRef]
- Meloni, S.; Moehl, T.; Tress, W.; Franckevic, M.; Saliba, M.; Lee, Y.H.; Gao, P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Rothlisberger, U.; et al. Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 2016, 7, 10334. [Google Scholar] [CrossRef]
- Mahapatra, A.; Anilkumar, V.; Nawrocki, J.; Pandey, S.V.; Chavan, R.D.; Yadav, P.; Prochowicz, D. Transient Photocurrent Response in a Perovskite Single Crystal-Based Photodetector: A Case Study on the Role of Electrode Spacing and Bias. Adv. Electron. Mater. 2023, 9, 2300226. [Google Scholar] [CrossRef]
- Mahapatra, A.; Anilkumar, V.; Chavan, R.D.; Yadav, P.; Prochowicz, D. Understanding the origin of light intensity and temperature dependence of photodetection properties in a MAPbBr3 single-crystal-based photoconductor. ACS Photonics 2023, 10, 1424. [Google Scholar] [CrossRef]
- Gavranovic, S.; Pospisil, J.; Zmeskal, O.; Novak, V.; Vanysek, P.; Castkova, K.; Cihlar, J.; Weiter, M. Electrode spacing as a determinant of the output performance of planar-type photodetectors based on methylammonium lead bromide perovskite single crystals. ACS Appl. Mater. Interfaces 2022, 14, 20159. [Google Scholar] [CrossRef]
Procedures | Nucleation Duration | Temperature | Single Crystal Type/ Growth Duration |
---|---|---|---|
Reference | 0.5 h | 85 °C | Large/5 h |
With BMIB (1 mol%) | 4 h | 65 °C | Small/24 h |
With BMIB (3 mol%) | 5 h | 65 °C | Small/24 h |
With BMIB (6 mol%) | 1.5 h | 65 °C | Large/12 h |
With BMIB (10 mol%) | N/A | 65 °C | NA/12 h |
Procedures | Nucleation Duration | Single Crystal Weight (6 h) | Mean Rate of Increase |
---|---|---|---|
Reference | 0.5 h | 402 mg | 0.96 mg/min |
With BMIB (6 mol%) | 1 h | 347 mg | 0.71 mg/min |
FWHM (°) | Ls (%) | |||
---|---|---|---|---|
Miller Indices (hkl) | With BMIB | Reference | With BMIB | Reference |
(020) | 0.054 | 0.063 | 0.074 | 0.120 |
(101) | 0.041 | 0.048 | 0.047 | 0.095 |
(040) | 0.082 | 0.096 | 0.108 | 0.179 |
(202) | 0.089 | 0.103 | 0.132 | 0.184 |
(060) | 0.034 | 0.042 | 0.019 | 0.041 |
(303) | 0.019 | 0.033 | 0.018 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alresheedi, F. Influence of Ionic Liquids on the Functionality of Optoelectronic Devices Employing CsPbBr3 Single Crystals. Crystals 2024, 14, 956. https://doi.org/10.3390/cryst14110956
Alresheedi F. Influence of Ionic Liquids on the Functionality of Optoelectronic Devices Employing CsPbBr3 Single Crystals. Crystals. 2024; 14(11):956. https://doi.org/10.3390/cryst14110956
Chicago/Turabian StyleAlresheedi, Faisal. 2024. "Influence of Ionic Liquids on the Functionality of Optoelectronic Devices Employing CsPbBr3 Single Crystals" Crystals 14, no. 11: 956. https://doi.org/10.3390/cryst14110956
APA StyleAlresheedi, F. (2024). Influence of Ionic Liquids on the Functionality of Optoelectronic Devices Employing CsPbBr3 Single Crystals. Crystals, 14(11), 956. https://doi.org/10.3390/cryst14110956