Explaining Color Change in Gem-Quality Andradite Garnet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Description
2.2. Fourier-Transform Infrared (FTIR) Spectroscopy
2.3. UV–Vis–NIR Spectroscopy
2.4. Raman Spectroscopy
2.5. Electron Probe Microanalysis
2.6. Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry
3. Results and Discussion
3.1. Conventional Gemological Characteristics
3.2. FTIR Spectroscopy
3.3. UV–Vis–NIR Spectroscopy
3.4. Raman Spectroscopy
3.5. Chemical Compositional Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, X.; Yue, S.; Chen, S. Gemological Characteristics and Discoloration Mechanism of Color-Chang Pyrope-Spessartine Garnet. Laser Optoelectron. Prog. 2022, 59, 1333001. [Google Scholar]
- Qiu, Y.; Guo, Y. Explaining Colour Change in Pyrope-Spessartine Garnets. Minerals 2021, 11, 865. [Google Scholar] [CrossRef]
- Shen, Y.A.; Ye, P. Cause of Tri-colour Change Effect of a Rare Garnet. J. Gems Gemmol. 2018, 20, 17–23. [Google Scholar]
- Supparat, P.; Apitchaya, B. A Rare Nearly Pure End-Member Grossular Garnet with Color-Change Effect. Gems Gemol. 2018, 54, 336. [Google Scholar]
- Williams, C.; Williams, B. Colour-Change Andradite. J. Gemmol. 2021, 37, 562–564. [Google Scholar] [CrossRef]
- Brunning, A. The Color of Alexandrite. Am. Sci. 2019, 107, 10. [Google Scholar]
- Wang, Z.-m.; Mao, X.-t.; Yin, Z.-w.; Chen, C.; Cheng, T.-j. Study on the Spectral Characteristics and the Color-Change Effect of Spinel. Spectrosc. Spectr. Anal. 2022, 42, 3541–3545. [Google Scholar]
- Wang, H.; Yu, X.-Y.; Liu, F.; Alam, M.; Wu, G.-C. Color Genesis and Compositional Characteristics of Color-Change Sapphire from Fuping, China. Crystals 2022, 12, 463. [Google Scholar] [CrossRef]
- Houran, J.; Laurs, B.M. Fluorite impersonating blue color-change garnet. Gems Gemol. 2008, 44, 263. [Google Scholar]
- Krzemnicki, M.S. Color-change in garnets from Madagascar: A comparison of colorimetric with chemical data. J. Gemmol. 2001, 27, 395–408. [Google Scholar] [CrossRef]
- Liu, C.-h.; Chen, C.-y.; Shao, T.; Li, Z.-b.; Shen, A.H. UV-Vis Absorption Spectra and 3D Fluorescence Spectra Study of Color-Change Garnet with Red Fluorescence. Spectrosc. Spectr. Anal. 2020, 40, 2148–2152. [Google Scholar]
- Sun, Z.; Palke, A.C.; Renfro, N.D.; Rizzo, J.M.; Hand, D.B.; Sanchez, D. Quantitative definition of strength of chromophores in gemstones and the impact on color change in pyralspite garnets. Color Res. Appl. 2022, 47, 1134–1154. [Google Scholar] [CrossRef]
- Li, L.P.; Ye, D. Roles of Cr and V in color change effect of gemstones. J. Gems Gemmol. 2003, 5, 17–21. [Google Scholar]
- Breitzmann, H.; Sun, Z.; Palke, A.C. Color-Change SPESSARTINE Garnet: A First Report. Gems Gemol. 2019, 55, 254–257. [Google Scholar]
- Kong, B.; Zou, J.F.; Shen, Y.P.; Luo, Y.Q. A primary study of alexandrite effect garnet from toliara, madagascar. J. Guilin Inst. Technol. 2000, A1, 27–30. [Google Scholar]
- Pei, J.-C.; Huang, W.-Z.; Zhang, Q.; Zhai, S.-H. Chemical Constituents and Spectra Characterization of Demantoid from Russia. Spectrosc. Spectr. Anal. 2019, 39, 3849–3854. [Google Scholar]
- Reed, S.J.B. Recent Advances in Electron-Microprobe Analysis. Inst. Phys. Conf. Ser. 1992, 130, 67–74. [Google Scholar]
- Wang, F.; Ge, G.; Ning, S.; Nie, L.; Zhong, G.; White, N.C. A new approach to LA-ICP-MS mapping and application in geology. Acta Petrol. Sin. 2017, 33, 3422–3436. [Google Scholar]
- Shen, J.; Qin, L.; Fang, Z.; Zhang, Y.; Liu, J.; Liu, W.; Wang, F.; Xiao, Y.; Yu, H.; Wei, S. High-temperature inter-mineral Cr isotope fractionation: A comparison of ionic model predictions and experimental investigations of mantle xenoliths from the North China Craton. Earth Planet. Sci. Lett. 2018, 499, 278–290. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Guenther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Wang, J.-R.; Wang, Y.-M.; Zhang, D.-Q.; Liu, Z.-D.; Wang, C.-W.; Yin, K.; Gao, X.-W.; Xu, Y. FTIR Investigation of garnet: Indication for Specific Species and Coloration: A Case Study of a Yellow Garnet. J. Gems Gemmol. 2020, 22, 20–25. [Google Scholar]
- Amthauer, G.; Rossman, G.R. The hydrous component in andradite garnet. Am. Miner. 1998, 83, 835–840. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, Q.; Feng, M. In situ FTIR investigations on nominally anhydrous minerals at varying temperatures. Acta Petrol. Sin. 2011, 27, 566–578. [Google Scholar]
- Rossman, G.R.; Aines, R.D. The Hydrous Components in Garnets—Grossular-Hydrogrossular. Am. Miner. 1991, 76, 1153–1164. [Google Scholar]
- Adamo, I.; Gatta, G.D.; Rotiroti, N.; Diella, V.; Pavese, A. Green andradite stones: Gemmological and mineralogical characterisation. Eur. J. Mineral. 2011, 23, 91–100. [Google Scholar] [CrossRef]
- Geiger, C.A.; Rossman, G.R. IR spectroscopy and OH- in silicate garnet: The long quest to document the hydrogarnet substitution. Am. Miner. 2018, 103, 384–393. [Google Scholar] [CrossRef]
- Geiger, C.A.; Stahl, A.; Rossman, G.R. Single-crystal IR- and UV/VIS-spectroscopic measurements on transition-metal-bearing pyrope: The incorporation of hydroxide in garnet. Eur. J. Mineral. 2000, 12, 259–271. [Google Scholar] [CrossRef]
- Moore, R.K.; Bin, W.W. Electronic spectra of transition metal ions in silicate garnets. Can. Mineral. 1972, 11, 791–811. [Google Scholar]
- Taran, M.N.; Dyar, M.D.; Matsyuk, S.S. Optical absorption study of natural garnets of almandine-skiagite composition showing intervalence Fe2+ + Fe3+ →Fe3+ + Fe2+ charge-transfer transition. Am. Miner. 2007, 92, 753–760. [Google Scholar] [CrossRef]
- Yang, P.; Guo, Y. New Insights into Coloration Mechanism in Violet-Red Pyrope-Almandine. Crystals 2022, 12, 379. [Google Scholar] [CrossRef]
- Gübelin, E.; Schmetzer, K. Gemstones with alexandrite effect. Gems Gemol. 1982, 18, 197–203. [Google Scholar] [CrossRef]
- Schifer, V.V. Spectroscopy, Luminescence and Radiation Centers in Minerals; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Stubna, J.; Bacik, P.; Fridrichova, J.; Hanus, R.; Illasova, L.; Milovska, S.; Skoda, R.; Vaculovic, T.; Cernansky, S. Gem-Quality Green Cr-Bearing Andradite (var. Demantoid) from Dobsina, Slovakia. Minerals 2019, 9, 164. [Google Scholar] [CrossRef]
- Sun, Z.-Y.; Palke, A.C.; Renfro, N.D.; Breitzmann, H.; Hand, D.; Muyal, J. Discovery of color-change chrome grossular garnets from Ethiopia. Gems Gemol. 2018, 54, 233–236. [Google Scholar]
- Zwaan, J.C. Colour-Change Garnet from Tanga, Tanzania. J. Gemmol. 2020, 37, 133–134. [Google Scholar] [CrossRef]
- Krambrock, K.; Guimaraes, F.S.; Pinheiro, M.V.B.; Paniago, R.; Righi, A.; Persiano, A.I.C.; Karfunkel, J.; Hoover, D.B. Purplish-red almandine garnets with alexandrite-like effect: Causes of colors and color-enhancing treatments. Phys. Chem. Miner. 2013, 40, 555–562. [Google Scholar] [CrossRef]
- Makreski, P.; Runcevski, T.; Jovanovski, G. Minerals from Macedonia. XXVI. Characterization and spectra—Structure correlations for grossular and uvarovite. Raman study supported by IR spectroscopy. J. Raman Spectrosc. 2011, 42, 72–77. [Google Scholar] [CrossRef]
- Giuliani, G.; Boiron, M.C.; Morlot, C.; Raoul, J.; Chatagnier, P.Y. Demantoid garnet with giant fluid inclusion. Gems Gemol. 2015, 51, 446–448. [Google Scholar]
- Adamo, I.; Bocchio, R.; Diella, V.; Caucia, F. Demantoid from Balochistan, Pakistan:Gemmological and Mineralogical Characterization. J. Gemmol. 2015, 34, 428–433. [Google Scholar] [CrossRef]
- Pezzotta, F.; Adamo, I.; Diella, V. Demantoid and Topazolite from Antetezambato, Northern Madagascar: Review and New Data. Gems Gemol. 2011, 47, 2–14. [Google Scholar] [CrossRef]
- Ahadnejad, V.; Krzemnicki, M.S.; Hirt, A.M. Demantoid from Kerman Province, South-east Iran: A Mineralogical and Gemmological Overview. J. Gemmol. 2022, 38, 329–347. [Google Scholar] [CrossRef]
- Buhn, B.; Okrusch, M.; Woermann, E.; Lehnert, K.; Hoernes, S. Metamorphic Evolution of Neoproterozoic Manganese Formations and Their Country Rocks at OTJOSONDU, NAMIBIA. J. Petrol. 1995, 36, 463–496. [Google Scholar] [CrossRef]
- Bocchio, R.; Adamo, I.; Diella, V. The Profile of Trace Elements, Including the REE, in Gem-Quality Green Andradite from Classic Localities. Can. Mineral. 2010, 48, 1205–1216. [Google Scholar] [CrossRef]
Sample Number | G-1 | G-2 |
---|---|---|
Color | Yellowish-green in daylight and maroon under incandescent light | Brownish yellow in daylight and brownish red under incandescent light |
Luster | Adamantine | Adamantine |
Clarity | Many fluid inclusions | Obvious inclusions can be seen under the table |
Specific gravity | 3.81 | 3.80 |
Fluorescence | Inert | Inert |
Chelsea filter | No reaction | No reaction |
Refractive index | RI > 1.78 | RI > 1.78 |
Internal features | Fissures, fingerprint inclusions, dark inclusions, visible growth lines, and parallel gas–liquid inclusions | Fingerprint inclusions and stress cracks, white point inclusions, fluid inclusions, light brown inclusions, and visible growth lines |
Locality | Water-Related Peaks | Data Source |
---|---|---|
Russia | 3562, 3604, and 3394 cm−1 | [21] |
Bombay, India | 3560 and 3610 cm−1 | [25] |
Rusinga Island | 3530 and 3560 cm−1 | [25] |
Stanley Butte, Arizona | Four resolved peaks between 3550 and 3630 cm−1 and three shoulders between 3630 and 3700 cm−1 | [25] |
Madagascar | 3560, 3580, 3610, and 3630 cm−1 | [26] |
Namibia | 3562, 3581, 3611, and 3631 cm−1 | [26] |
Pakistan | 3564 and 3605 cm−1 | [26] |
Iran | 3563 and 3605 cm−1 | [26] |
Russia | 3558 cm−1 | [26] |
Valmalenco | 3562 and 3604 cm−1 | [26] |
Valmalenco, Italy | 3563 cm−1 | [27] |
Type | Analysis of UV–Vis Spectra | Data Source |
---|---|---|
Pyrope–spessartine garnet | The absorption band centered at about 571 nm is the result of Cr3+ | [1] |
Pyrope–spessartine garnet | The absorption band centered at about 574 nm is caused by Cr3+ and V3+ | [2] |
Iron- and calcium-bearing manganic pyrope garnet | The absorption band centered at about 575 nm is the result of V3+ and Cr3+ | [3] |
Andradite | The absorption bands at about 575 nm and 610 nm are caused by Fe | [5] |
Grossular garnet | The absorption band centered at about 600 nm is caused by Cr3+ | [6] |
Pyrope–spessartine garnets | The absorption band centered at about 573 nm is caused by V3+ ± Cr3+ | [6] |
Pyrope–spessartine garnets | V is the main element of the color-changing effect | [10] |
Pyrope–spessartine garnet | The absorption band centered at about 571 nm is the result of Cr3+ and V3+ | [11] |
Pyrope garnet | V and Cr are the main elements of the color-changing effect | [12] |
Pyrope–spessartine garnet | The wide absorption band centered at about 575 nm is caused by V3+ | [13] |
Spessartine garnet | The absorption band centered at about 585 nm is caused by V3+ | [14] |
Magnesium-rich spessartine garnet | The absorption band between 580 nm and 620 nm is caused by Cr | [15] |
Grossular garnet | The absorption band centered at about 599 nm is the result of Cr3+ and V3+ | [34] |
Pyrope–spessartine garnet | The absorption band centered at about 573 nm is caused by V3+ and Cr3+ | [35] |
Almandine–pyrope garnet | The absorption bands at 573 nm and 618 nm are caused by Fe2+ | [36] |
Peak Position Attribution [37] | Stretching Vibrations of [SiO4] | Bending Vibrations of [SiO4] | Rotational Vibrations of [SiO4] | Translational Vibrations of Ca2+ and [SiO4] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
υ3 | υ1 | υ3 | υ3 | υ4 | υ4 | υ4 | υ4 | υ2 | |||||||||
Samples | 995.5 | 873.5 | 841.5 | 815 | 576 | 552 | 515 | 492.5 | 453 | 369 | 350.5 | 323 | 311 | 298 | 266 | 236.5 | 173 |
Andradite from Russia [17] | 994.5 | 873.5 | 841.5 | 815 | 576 | 552 | 515 | 492 | 451 | 369 | 351 | 323 | 310.5 | 295 | 263 | 234.5 | 172 |
Andradite from Madagascar [38] | 996 | 874 | 841 | 815 | 576 | 555 | 515 | 493 | 454 | 371 | 352 | 324 | 312 | 304 | 266 | 236 | 174 |
Sample EPMA | G-1-1 | G-1-2 | G-1-3 | G-2-1 | G-2-2 | G-2-3 |
---|---|---|---|---|---|---|
Al2O3 | 0 | 0 | 0.016 | 0.002 | 0.01 | 0.011 |
MgO | 0.032 | 0.034 | 0.075 | 0.047 | 0.052 | 0.079 |
Na2O | 0.042 | 0.023 | 0.17 | 0.061 | 0.026 | 0 |
K2O | 0.028 | 0.002 | 0.052 | 0.014 | 0.015 | 0.019 |
CaO | 32.337 | 32.253 | 32.29 | 32.028 | 32.131 | 31.974 |
Cr2O3 | 0.042 | 0 | 0.047 | 0.009 | 0 | 0.047 |
SiO2 | 38.803 | 38.55 | 37.38 | 37.299 | 37.038 | 36.599 |
P2O5 | 0.026 | 0.01 | 0.049 | 0.013 | 0.013 | 0.033 |
V2O3 | 0 | 0 | 0 | 0.024 | 0.024 | 0.111 |
MnO | 0 | 0 | 0.016 | 0 | 0.009 | 0 |
Fe2O3 | 23.655 | 23.428 | 25.749 | 24.523 | 25.323 | 25.380 |
FeO | 4.66 | 4.552 | 2.310 | 3.206 | 2.852 | 2.646 |
TiO2 | 0.028 | 0 | 0 | 0.049 | 0.002 | 0.026 |
CoO | 0.059 | 0.075 | 0.024 | 0.025 | 0.035 | 0.049 |
Total | 99.708 | 98.927 | 98.177 | 97.301 | 97.530 | 96.974 |
P5+ | 0.002 | 0.001 | 0.004 | 0.001 | 0.001 | 0.002 |
Si4+ | 3.253 | 3.256 | 3.184 | 3.207 | 3.182 | 3.164 |
Ʃ | 3.255 | 3.257 | 3.188 | 3.208 | 3.183 | 3.166 |
Al3+ | 0 | 0 | 0.002 | 0 | 0.001 | 0.001 |
Cr3+ | 0.003 | 0 | 0.003 | 0.001 | 0 | 0.003 |
V3+ | 0 | 0 | 0 | 0.002 | 0.002 | 0.008 |
Fe3+ | 1.492 | 1.489 | 1.65 | 1.587 | 1.637 | 1.651 |
Ti3+ | 0.002 | 0 | 0 | 0.003 | 0 | 0.002 |
Ʃ | 1.497 | 1.489 | 1.655 | 1.593 | 1.64 | 1.665 |
Mg2+ | 0.004 | 0.004 | 0.01 | 0.006 | 0.007 | 0.01 |
Na+ | 0.007 | 0.004 | 0.028 | 0.01 | 0.004 | 0 |
K+ | 0.003 | 0 | 0.006 | 0.002 | 0.002 | 0.002 |
Ca2+ | 2.904 | 2.919 | 2.947 | 2.95 | 2.957 | 2.962 |
Mn2+ | 0 | 0 | 0.001 | 0 | 0.001 | 0 |
Fe2+ | 0.326 | 0.322 | 0.165 | 0.231 | 0.205 | 0.191 |
Co2+ | 0.004 | 0.005 | 0.002 | 0.002 | 0.002 | 0.003 |
Ʃ | 3.248 | 3.254 | 3.159 | 3.201 | 3.178 | 3.168 |
End-member (%) | ||||||
Adr | 84.16 | 84.06 | 87.71 | 86.67 | 88.64 | 89.30 |
Others | 15.84 | 15.94 | 12.29 | 13.33 | 11.36 | 10.70 |
Element | G-1A | G-1B | G-1C | G-1D | G-2A | G-2B | G-2C | G-2D |
---|---|---|---|---|---|---|---|---|
Mg | 283 | 294 | 331 | 356 | 337 | 337 | 343 | 351 |
Al | 76.4 | 43.3 | 128 | 243 | 40.5 | 39.2 | 40.5 | 38 |
Sc | 2.47 | 2.46 | 2.47 | 2.72 | 2.43 | 2.68 | 2.37 | 2.52 |
Ti | 1.2 | 2.07 | 6.95 | 9.63 | Bdl | Bdl | Bdl | 1.63 |
V | Bdl | Bdl | 0.119 | 0.182 | Bdl | Bdl | Bdl | Bdl |
Cr | Bdl | Bdl | Bdl | Bdl | Bdl | Bdl | Bdl | Bdl |
Mn | 128 | 153 | 167 | 162 | 49.2 | 49.6 | 49.9 | 51.1 |
Co | 0.253 | 0.217 | 0.366 | 0.334 | 0.235 | 0.147 | 0.175 | 0.147 |
Ni | 1.09 | 1.17 | 1.42 | 1.22 | Bdl | 0.239 | Bdl | Bdl |
Ce | 1.79 | 0.642 | 1.18 | 2.93 | Bdl | Bdl | Bdl | Bdl |
Nd | 0.672 | Bdl | Bdl | 1 | Bdl | Bdl | Bdl | Bdl |
Fe | 139,367 | 139,056 | 138,360 | 139,617 | 138,809 | 139,397 | 139,465 | 138,104 |
Ga | 35.1 | 34.2 | 42.6 | 76.9 | 19.4 | 20.9 | 20 | 19.3 |
Sn | 66.1 | 68.1 | 72.1 | 78.9 | 42.7 | 46.4 | 47.1 | 47.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.-H.; Yu, X.-Y.; Shen, M.; Yan, Y.; Wang, G.-Y. Explaining Color Change in Gem-Quality Andradite Garnet. Crystals 2024, 14, 180. https://doi.org/10.3390/cryst14020180
Xu J-H, Yu X-Y, Shen M, Yan Y, Wang G-Y. Explaining Color Change in Gem-Quality Andradite Garnet. Crystals. 2024; 14(2):180. https://doi.org/10.3390/cryst14020180
Chicago/Turabian StyleXu, Jia-Hong, Xiao-Yan Yu, Mei Shen, Ying Yan, and Guang-Ya Wang. 2024. "Explaining Color Change in Gem-Quality Andradite Garnet" Crystals 14, no. 2: 180. https://doi.org/10.3390/cryst14020180
APA StyleXu, J.-H., Yu, X.-Y., Shen, M., Yan, Y., & Wang, G.-Y. (2024). Explaining Color Change in Gem-Quality Andradite Garnet. Crystals, 14(2), 180. https://doi.org/10.3390/cryst14020180