Investigation of the Positive Temperature Coefficient Resistivity of Nb-Doped Ba0.55Sr0.45TiO3 Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Temperature Dependence of the Electrical Resistivity of Nb-Doping BST Ceramics
3.2. Influences of the Cooling Rate on Nb-BST Ceramics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Fan, M.; Liu, X.; Huang, C.; Li, H. Beltlike V2O3@ C Core–Shell-Structured Composite: Design, Preparation, Characterization, Phase Transition, and Improvement of Electrochemical Properties of V2O3. Eur. J. Inorg. Chem. 2012, 2012, 1650–1659. [Google Scholar] [CrossRef]
- Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature dependent ageing mechanisms in Lithium-ion batteries–A Post-Mortem study. J. Power Sources 2014, 262, 129–135. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Chen, Z. Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges. Appl. Energy 2022, 313, 118832. [Google Scholar] [CrossRef]
- Meng, S.; Dou, L.; Mu, M. Design of Thermal Management System for Lithium Battery at LOW Temperature. In Proceedings of the ITM Web of Conferences, Shanghai, China, 29–30 March 2022; EDP Sciences: Ulis, France, 2022; p. 03036. [Google Scholar]
- Chen, P.; Lu, Z.; Ji, L.; Li, Y. Design of the control scheme of power battery low temperature charging heating based on the real vehicle applications. In Proceedings of the 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), Beijing, China, 15–18 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–6. [Google Scholar]
- Al Hallaj, S.; Selman, J. A novel thermal management system for electric vehicle batteries using phase-change material. J. Electrochem. Soc. 2000, 147, 3231. [Google Scholar] [CrossRef]
- Wang, P.-J.; Zeng, Z.-Q.; Gui, Z.-L.; Li, L.-T. Strontium-lead titanate ceramics with positive temperature coefficient of resistance. Mater. Lett. 1997, 30, 275–277. [Google Scholar] [CrossRef]
- Kumar, M.; Garg, A.; Kumar, R.; Bhatnagar, M. Structural, dielectric and ferroelectric study of Ba0.9Sr0.1ZrxTi1−xO3 ceramics prepared by the sol–gel method. Phys. B Condens. Matter 2008, 403, 1819–1823. [Google Scholar] [CrossRef]
- Yu, A.; Li, Q.; Fan, D.; Zhang, H. Study on positive temperature coefficient of resistivity of co-doped BaTiO3 with Curie temperature in room temperature region. Sci. China Technol. Sci. 2019, 62, 811–819. [Google Scholar] [CrossRef]
- Yu, L.; Xue, Q.; Zhang, R.; Tang, C.; Liu, S. On a sudden-changing PTC material with low curie temperature. Electron Compon. Mater. 1994, 13, 14–16. (In Chinese) [Google Scholar]
- Patil, D.; Lokare, S.; Devan, R.; Chougule, S.; Kanamadi, C.; Kolekar, Y.; Chougule, B. Studies on electrical and dielectric properties of Ba1− xSrxTiO3. Mater. Chem. Phys. 2007, 104, 254–257. [Google Scholar] [CrossRef]
- Hasegawa, A.; Fujitsu, S.; Yanagida, K.K. The enhanced penetration of oxygen along the grain boundary in semiconducting barium titanate. Jpn. J. Appl. Phys. 1991, 30, 1252. [Google Scholar] [CrossRef]
- Alles, A.B.; Amarakoon, V.R.; Burdick, V.L. Positive temperature coefficient of resistivity effect in undoped, atmospherically reduced barium titanate. J. Am. Ceram. Soc. 1989, 72, 148–151. [Google Scholar] [CrossRef]
- Alles, A.B.; Burdick, V.L. Grain boundary oxidation in PTCR barium titanate thermistors. J. Am. Ceram. Soc. 1993, 76, 401–408. [Google Scholar] [CrossRef]
- Cheng, X.; Zhou, D.; Fu, Q.; Gong, S.; Qin, Y. Effect of reoxidation annealing on the PTCR behaviour of multilayer Nb5+-doped BaTiO3 ceramics with a Ni internal electrode. J. Phys. D Appl. Phys. 2012, 45, 385306. [Google Scholar] [CrossRef]
- Wang, X.; Chan, H.L.-W.; Choy, C.-l. Positive temperature coefficient of resistivity effect in niobium-doped barium titanate ceramics obtained at low sintering temperature. J. Eur. Ceram. Soc. 2004, 24, 1227–1231. [Google Scholar] [CrossRef]
- Miki, T.; Fujimoto, A.; Jida, S. An evidence of trap activation for positive temperature coefficient of resistivity in BaTiO3 ceramics with substitutional Nb and Mn as impurities. J. Appl. Phys. 1998, 83, 1592–1603. [Google Scholar] [CrossRef]
- Gao, C.; Fu, Q.; Zhou, D.; Zu, H.; Chen, T.; Xue, F.; Hu, Y.; Zheng, Z.; Luo, W. Nanocrystalline semiconducting donor-doped BaTiO3 ceramics for laminated PTC thermistor. J. Eur. Ceram. Soc. 2017, 37, 1523–1528. [Google Scholar] [CrossRef]
- Lin, T.-F.; Hu, C.-T.; Lin, I.-N. Defects restoration during cooling and annealing in PTC type barium titanate ceramics. J. Mater. Sci. 1990, 25, 3029–3033. [Google Scholar] [CrossRef]
- Kolodiazhnyi, T.; Tachibana, M.; Kawaji, H.; Hwang, J.; Takayama-Muromachi, E. Persistence of ferroelectricity in BaTiO3 through the insulator-metal transition. Phys. Rev. Lett. 2010, 104, 147602. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gong, S.; Quan, L.; Chen, B.; Zhou, D. Reoxidation effects of Ba-excessive barium titanate ceramics for laminated positive temperature coefficient thermistors. J. Am. Ceram. Soc. 2012, 95, 1640–1644. [Google Scholar] [CrossRef]
- Heywang, W. Resistivity anomaly in doped barium titanate. J. Am. Ceram. Soc. 1964, 47, 484–490. [Google Scholar] [CrossRef]
- Jonker, G. Some aspects of semiconducting barium titanate. Solid-State Electron. 1964, 7, 895–903. [Google Scholar] [CrossRef]
- Hendrix, B.; Wang, X.; Chen, W.; Cui, W. Understanding doped V2O3 as a functional positive temperature coefficient material. J. Mater. Sci. Mater. Electron. 1992, 3, 113–119. [Google Scholar] [CrossRef]
- Yan, F.; Han, W.; Wang, X.; Chen, J.; Wei, L. The effect of Cr dopant concentration on electrical property of (V1−xCrx)2O3 nano-grain ceramics. Mater. Res. Bull. 2013, 48, 2365–2369. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, X. Investigation of the Positive Temperature Coefficient Resistivity of Nb-Doped Ba0.55Sr0.45TiO3 Ceramics. Crystals 2024, 14, 419. https://doi.org/10.3390/cryst14050419
Wang Y, Chen X. Investigation of the Positive Temperature Coefficient Resistivity of Nb-Doped Ba0.55Sr0.45TiO3 Ceramics. Crystals. 2024; 14(5):419. https://doi.org/10.3390/cryst14050419
Chicago/Turabian StyleWang, Yifei, and Xiaoyang Chen. 2024. "Investigation of the Positive Temperature Coefficient Resistivity of Nb-Doped Ba0.55Sr0.45TiO3 Ceramics" Crystals 14, no. 5: 419. https://doi.org/10.3390/cryst14050419
APA StyleWang, Y., & Chen, X. (2024). Investigation of the Positive Temperature Coefficient Resistivity of Nb-Doped Ba0.55Sr0.45TiO3 Ceramics. Crystals, 14(5), 419. https://doi.org/10.3390/cryst14050419