Molecular Simulations of Unexplored Philippine Plant Constituents on the Inhibition of the Proinflammatory Marker NF-κB p50 Subunit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Terpenoids
2.2. Preparation of the p50 3D Structure
2.3. Preparation of Ligands and Pharmacokinetics Investigation
2.4. Molecular Docking Analysis
2.5. Molecular Dynamics Simulation
2.6. Pharmacophore Modeling
3. Results
3.1. Structural Validation of the Processed p50 Protein
3.2. In Silico Investigation of the Anti-Inflammatory Potential of Compounds
3.3. Molecular Dynamics Simulation
3.4. Protein Energy Networks
3.5. Pharmacokinetic Properties of the Selected Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lange, B. The Evolution of Plant Secretory Structures and Emergence of Terpenoid Chemical Diversity. Annu. Rev. Plant Biol. 2015, 66, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Saleh, H.A.; Yousef, M.H.; Abdelnaser, A. The anti-inflammatory properties of phytochemicals and their effects on epigenetic mechanisms involved in TLR4/NF-κB-mediated inflammation. Front. Immunol. 2021, 12, 606069. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Lehtonen, M.; Suuronen, T.; Kaarniranta, K.; Huuskonen, J. Terpenoids: Natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Cell. Mol. Life Sci. 2008, 65, 2979–2999. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.A.; Joo, B.J.; Lee, J.S.; Ryu, G.; Han, M.; Kim, W.Y.; Park, H.H.; Lee, J.H.; Lee, C.S. Phytochemicals as anti-inflammatory agents in animal models of prevalent inflammatory diseases. Molecules 2020, 25, 5932. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.P.; Cai, S.X.; Liu, D.B.; Xu, X.; Liang, H.P. Anti-inflammatory effects of a novel peptide designed to bind with NF-κB p50 subunit. Acta Pharmacol. Sin. 2006, 27, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wan, Y.; Huang, C. The Biological Functions of NF-κB1 and its potential as anti-cancer target. Curr. Cancer Drug Targets 2009, 9, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Nowarski, R.; Gagliani, N.; Huber, S.; Flavell, R.A. Innate Immune Cells in Inflammation and Cancer. Cancer Immunol. Res. 2013, 1, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Vinolo, M.A.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef]
- Wullaert, A. Role of NF-κB activation in intestinal immune homeostasis. Int. J. Med. Microbiol. 2010, 300, 49–56. [Google Scholar] [CrossRef]
- Cartwright, T.; Perkins, N.D.; Wilson, C.L. NFκB1: A Suppressor of Inflammation, Ageing and Cancer. FEBS J. 2016, 283, 1812–1822. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Huuskonen, J.; Ojala, J.; Kauppinen, A.; Kaarniranta, K.; Suuronen, T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res. Rev. 2008, 7, 83–105. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-M.; Spratt, T.E.; Stanley, B.A.; De Cotiis, D.A.; Bewley, M.C.; Flanagan, J.M.; Desai, D.; Das, A.; Fiala, E.S.; Amin, S.; et al. Inhibition of Nuclear Factor-ΚB DNA Binding by Organoselenocyanates through Covalent Modification of the P50 Subunit. Cancer Res. 2007, 67, 10475–10483. [Google Scholar] [CrossRef] [PubMed]
- Ragasa, C.Y.; Padolina, W.G.; Bowden, B.F.; Li, S.; Tapiolas, D.M.; Coll, J.C. New eudesmanolide sesquiterpenes from a Philippines collection of Wedelia prostata. J. Nat. Prod. 1993, 56, 386–393. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Padolina, W.G.; Yamauchi, T.; Otsuka, H.; Yamasaki, K.; Satoh, T. Germacranolides from Pseudoelephantopus spicatus. Phytochemistry 1993, 33, 627–629. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Nacpil, Z.D.; Natividad, G.M.; Tada, M.; Coll, J.C.; Rideout, J.A. Tetranortriterpenoids from Azadirachta indica. Phytochemistry 1997, 46, 555–558. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Rideout, J.A.; Tierra, D.S.; Coll, J.C. Sesquiterpene glycosides from Pittosporum pentandrum. Phytochemistry 1997, 45, 545–547. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Rideout, J.A.; Sy, J.O.; Alcachupas, D.; Inte VM, L.; Coll, J.C. Bioactive monoterpene glycosides from Erigeron linifolius. Phytochemistry 1997, 46, 151–154. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Juan, E.; Rideout, J.A. A Triterpene from Ficus pumila. J. Asian Nat. Prod. Res. 1999, 1, 269–275. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Cruz, M.C.; Gula, R.; Rideout, J.A. Clerodane Diterpenes from Tinospora rumphii. J. Nat. Prod. 2000, 63, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Ragasa, C.Y.; Templora, V.F.; Rideout, J.A. Diastereomeric diterpenes from Coleus blumei. Chem. Pharm. Bull. 2001, 49, 927–929. [Google Scholar] [CrossRef] [PubMed]
- Ragasa, C.Y.; Rideout, J.A. An antifungal cadinanolide from Pseudoelephantopus spicatus. Chem. Pharm. Bull. 2001, 49, 1359–1361. [Google Scholar] [CrossRef] [PubMed]
- Ragasa, C.Y.; Tremor, N.; Rideout, J.A. Ionone derivatives from Alternanthera sessilis. J. Asian Nat. Prod. Res. 2002, 4, 109–115. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Hofileña, J.G.; Rideout, J.A. New Furanoid Diterpenes from Caesalpinia pulcherrima. J. Nat. Prod. 2002, 65, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Ragasa, C.Y.; Ganzon, J.; Hofilena, J.; Tamboong, B.; Rideout, J.A. A New Furanoid Diterpene from Caesalpinia pulcherrima. Chem. Pharm. Bull. 2003, 51, 1208–1210. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Tiu, F.; Rideout, J. A New cycloartenol esters from Ixora coccinea. Nat. Prod. Res. 2004, 18, 319–323. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Ngo, H.T.; Rideout, J.A. Terpenoids and Sterols from Lagerstroemia speciosa. J. Asian Nat. Prod. Res. 2005, 7, 7–12. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; de Luna, R.D.; Cruz, W.C.; Rideout, J.A. Monoterpene Lactones from the Seeds of Nephelium appaceum. J. Nat. Prod. 2005, 68, 1394–1396. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Pimenta LE, N.; Rideout, J.A. Iridoids from Gardenia jasminoides. Nat. Prod. Res. 2007, 21, 1078–1084. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Tepora, M.M.; Espinelli, D.H.; Mandia, E.H.; Rideout, J. A Chromomoric acid derivatives from Tectona philippinensis. J. Nat. Prod. 2008, 71, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Ragasa, C.Y.; de Jesus, J.P.; Apuada, M.J.; Rideout, J.A. A New Sesquiterpene from Artemisia vulgaris. J. Nat. Med. 2008, 62, 461–463. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Tsai, P.W.; Galvez, C.T.; Shen, C.C. New carvotanacetone derivatives from Sphaeranthus africanus. Planta Medica 2010, 76, 146–151. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Espineli, D.L.; Shen, C.-C. New Triterpenes from Barringtonia asiatica. Chem. Pharm. Bull. 2011, 59, 778–782. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Espineli, D.L.; Mandia, E.H.; Raga, D.D.; Don, M.-J.; Shen, C.-C. A New Triterpene from Atalantia retusa Merr. Z. Naturforschung B 2012, 67, 426–432. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Espineli, D.L.; Shen, C.-C. Cytotoxic Triterpene from Barringtonia asiatica. Pharm. Chem. J. 2014, 48, 529–533. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Espineli, D.L.; Agoo, E.M.; del Fierro, R.S. Chemical Constituents of Cinnamomum cebuense. Chin. J. Nat. Med. 2013, 11, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Ragasa, C.Y.; Torres, O.B.; Bernardo, L.O.; Mandia, E.H.; Don, M.J.; Shen, C.C. Glabretal-type triterpenoids from Dysoxylum mollissimum. Phytochem. Lett. 2013, 6, 514–518. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Torres, O.B.; Raga, D.D.; Mandia, E.H.; Don, M.; Shen, C. New triterpenes from the bark of Canarium asperum. Der Pharm. Lett. 2014, 6, 290–294. [Google Scholar]
- Ragasa, C.Y.; Espineli, D.L.; Mandia, E.H.; Don, M.-J.; Shen, C.-C. A New Triterpene from Glinus oppositifolius. Chin. J. Nat. Med. 2012, 10, 284–286. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Ng, V.A.; Agoo, E.M.; Shen, C.C. An isopimarane diterpene from Cycas sancti-lasallei. Sch. Res. Libr. 2015, 7, 168–171. [Google Scholar]
- Ragasa, C.Y.; Ng, V.A.S.; Agoo, E.M.G.; Shen, C.C. An isoflavonoid phtoalexin and a sesquiterpene from Cycas wadei. Int. J. Pharmacogn. Phytochem. 2016, 8, 686–689. [Google Scholar]
- Ragasa, C.Y.; Si, M.; Tan, M.C.S.; Pelobello, D.H.; Don, M.J.; Shen, C.C. A new sesquiterpene from Dendranthema grandiflora flowers. Chem. Nat. Compd. 2020, 56, 436–439. [Google Scholar] [CrossRef]
- Barre, J.T.; Bowden, B.F.; Coll, J.C.; De Jesus, J.; De La Fuente, V.E.; Janairo, G.C.; Ragasa, C.Y. A Bioactive Triterpene from Lantana camara. Phytochemistry 1997, 45, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Zulueta MC, A.; Tada, M.; Ragasa, C.Y. A diterpene from Bidens pilosa. Phytochemistry 1995, 38, 1449–1450. [Google Scholar]
- ACD/ChemSketch, version 2020.2.26; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2020.
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Van Der Spoel, D.; Van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Comm 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Schüttelkopf, A.W.; van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, 60 Pt. 8, 1355–1363. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Molec. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Schneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PharmaGist: A webserver for ligand-based pharmacophore detection. Nucleic Acids Res. 2008, 36 (Suppl. S2), W223–W228. [Google Scholar] [CrossRef] [PubMed]
- Discovery Studio Visualizer, version 21.1.0.20298; Dassault Syste_mes Biovia Corp: Aix en Provence, France, 2020.
- Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of Protein Models with Three-Dimensional Profiles. Nature 1992, 356, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Dym, O.; Eisenberg, D.; Yeates, T.O. Detection of Errors in Protein Models. In International Tables for Crystallography: Crystallography of Biological Macromolecules, 2nd ed.; Arnold, E., Himmel, D.M., Rossmann, M.G., Eds.; John Wiley and Sons: Chichester, UK, 2011; Volume F. [Google Scholar]
- Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and Drugability. Adv. Drug Deliv. Rev. 2016, 101, 89–98. [Google Scholar] [CrossRef]
- Noreen, S.; Maqbool, I.; Madni, A. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur. J. Pharmacol. 2021, 89, 173854. [Google Scholar] [CrossRef]
- Dvořák, Z.; Vrzal, R.; Maurel, P.; Ulrichová, J. Differential effects of selected natural compounds with anti-inflammatory activity on the glucocorticoid receptor and NF-κB in HeLa cells. Chem.-Biol. Interact. 2006, 159, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct. Target. Ther. 2020, 5, 209. [Google Scholar] [CrossRef]
- Lou, L.; Zhou, J.; Liu, Y.; Wei, Y.I.; Zhao, J.; Deng, J.; Dong, B.; Zhu, L.; Wu, A.; Yang, Y.; et al. Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways. Exp. Ther. Med. 2016, 11, 2054–2060. [Google Scholar] [CrossRef]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.; da Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef]
- Müller, C.W.; Rey, F.A.; Sodeoka, M.; Verdine, G.L.; Harrison, S.C. Structure of the NF-kB p50 Homodimer Bound to DNA. Nature 1995, 373, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Shivanika, C.; Kumar, S.D.; Ragunathan, V.; Tiwari, P.; Sumitha, A.; Devi, P.B. PBD Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn. 2022, 40, 585–611. [Google Scholar] [CrossRef] [PubMed]
- Teague, S.J. Implications of protein flexibility for drug discovery. Nat. Rev. Drug Discov. 2003, 2, 527–541. [Google Scholar] [CrossRef] [PubMed]
- Grünberg, R.; Nilges, M.; Leckner, J. Flexibility and Conformational Entropy in Protein-Protein Binding. Structure 2006, 14, 1205. [Google Scholar] [CrossRef] [PubMed]
- Kalamantianos, K. In silico drug repurposing for coronavirus (COVID-19): Screening known HCV drugs against the SARS-CoV-2 spike protein bound to angiotensins-converting enzyme 2(ACE-2) (6M0J). Mol. Divers. 2022, 23, 1087–1099. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.; Savidge, T. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv. 2016, 2, e1501240. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. ADMET-score—A comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm 2019, 10, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Arma, M.V.; Ashokraj, Y.; Dey, C.S.; Panchagnula, R. P-glycoprotein inhibitors and their screening: A perspective from bioavailability enhancement. Pharmacol. Res. 2003, 48, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Mechanisms of Drug Toxicity and Relevance to Pharmaceutical Development. Drug Metab. Pharmacokinet. 2011, 26, 3–14. [Google Scholar] [CrossRef]
- Sareen, S.; Mathew, G.; Joseph, L. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int. J. Pharm. Investig. 2012, 2, 12–17. [Google Scholar] [CrossRef]
- Kumar, A.; Jernigan, R.L. Ligand Binding Introduces Significant Allosteric Shifts in the Locations of Protein Fluctuations. Front. Mol. Biosci. 2021, 8, 733148. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Gerick, F.; Thornton, J.M. The Structural Basis of Allosteric Regulation in Proteins. FEBS Lett. 2009, 583, 1692–1698. [Google Scholar] [CrossRef] [PubMed]
- Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Front. Pharmacol. 2018, 9, 1275. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012, 2, 2–11. [Google Scholar] [CrossRef]
- Morimoto, J.; Miyamoto, K.; Ichikawa, Y.; Uchiyama, M.; Makishima, M.; Hashimoto, Y.; Ishikawa, M. Improvement in Aqueous Solubility of Achiral Symmetric Cyclofenil by Modification to a Chiral Asymmetric Analog. Sci. Rep. 2021, 11, 12697. [Google Scholar] [CrossRef]
Compound Name | Code | Binding Energy (kcal/mol) | Molecular Formula | Lipinski’s Rule of Five * | ||||
---|---|---|---|---|---|---|---|---|
MW (Da) | TPSA (Å) | |||||||
Dexamethasone ** (CID:5743) | C1 | −3.7 | C22H29O5F | 394.51 | 1.9 | 5 | 3 | 94.8 |
Chlorogenic acid (CID:1794427) | C2 | −3.5 | C16H18O9 | 354.10 | 0.3 | 9 | 6 | 164.75 |
Humulene *** (CID: 5281520) | C3 | −3.1 | C15H24 | 204.19 | 5.2 | 0 | 0 | 0 |
eudesm-11-en-4α-O-β-D-3-senecioyloxy-6-deoxyglucopyranoside | 11 | −3.9 | C26H42O6 | 464.64 | 4.7 | 6 | 2 | 85.2 |
eudesm-11-en-4α-O-β-D-3-tigoyloxy-6-deoxy-glucopyranoside | 12 | −4.2 | C26H4206 | 464.64 | 4.7 | 6 | 2 | 85.2 |
α-pinene-7β-O-β-D-2-acetylglucopyranoside | 14 | −3.9 | C18H2805 | 314.37 | 0.2 | 6 | 4 | 99.4 |
(2aβ,3α,5aβ,6β,7α,8aα)-6-[2-(3-furanyl)ethyl]-2a,3,4,5,5a,6,7,8,8a,8b-decahydro-2a,3-dihydroxy-6,7,8b-trimethyl-2H-naphtho[1-8-bc]furan-2-one | 16 | −3.7 | C20H28O5 | 348.44 | 2.7 | 5 | 2 | 79.9 |
Wadeiol | 56 | −4.0 | C16H13O | 286.28 | 2.7 | 5 | 2 | 68.2 |
Grandiflorolide | 58 | −4.0 | C17H20O5 | 304.34 | 1.7 | 5 | 1 | 72.3 |
Compound | Interacting Residues | Protein Residues Involved in | |||||
---|---|---|---|---|---|---|---|
Hydrogen Bonding | Van der Waals | Alkyl and/or π–alkyl | Carbon Hydrogen Bonding | π—Cation | π–π T-Shaped | ||
11 | Arg 57, Tyr 60, Glu 63, Lys 244, Ala 245, Pro 246, Lys 275, Arg 308 | Lys 275 (1.85 Å), Arg 308 (2.39 Å) | Arg 57, Glu 63, Ala 245 | Tyr 60 (5.03 Å), Lys 244 (4.69 Å), Pro 246 (5.38 Å) | n.a. | n.a. | n.a. |
12 | Arg 57, Tyr 60, Lys 244, Pro 246, Lys 275, Arg 308, Gln 309, Phe 310 | Lys 275 (2.86 Å) | Arg 57, Pro 246, Gln 309 | Tyr 60 (4.67 Å), Lys 244 (4.81 Å), Arg 308 (3.80 Å), Phe 310 (5.41 Å) | n.a. | n.a. | n.a. |
14 | Arg 57, Tyr 60, Glu 63, Lys 244, Ala 245, Pro 246, Lys 275 | Lys 244 (2.42 Å), Lys 275 (2.16 Å) | Arg 57, Glu 63, Ala 245 | Tyr 60 (5.47 Å) | Pro 246 (3.50 Å) | n.a. | n.a. |
16 | Lys 244, Lys 275, Arg 308, Phe 310 | Lys 244 (2.33 Å) | Arg 308, Phe 310 | n.a. | n.a. | Lys 275 (4.24 Å) | n.a. |
56 | Arg 57, Tyr 60, Glu 63, Lys 244, Pro 246, Lys 275 | Lys 244 (2.03 Å) | Arg 57, Glu 63, Lys 275 | Pro 246 (4.20 Å) | n.a. | n.a. | Tyr 60 (4.80 Å) |
58 | Lys 275, Arg 308, Gln 309, Phe 310 | Lys 275 (2.18 Å), Arg 308 (2.16 Å) | Gln 309, Phe 310 | n.a. | n.a. | n.a. | n.a. |
Compound | Features | Pharmacophore Descriptors | |||
---|---|---|---|---|---|
Aromatic | Hydrophobic | Hydrogen Donors | Hydrogen Acceptors | ||
11 | 31 | 0 | 23 | 2 | 6 |
12 | 30 | 0 | 22 | 2 | 6 |
14 | 22 | 0 | 12 | 4 | 6 |
16 | 21 | 1 | 13 | 2 | 5 |
56 | 11 | 2 | 2 | 2 | 5 |
58 | 15 | 0 | 9 | 1 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ting, J.U.; Tan, M.C.S.; Ng, V.A.S.; Macalino, S.J.Y.; Linis, V.C.; Oyong, G.G. Molecular Simulations of Unexplored Philippine Plant Constituents on the Inhibition of the Proinflammatory Marker NF-κB p50 Subunit. Crystals 2024, 14, 438. https://doi.org/10.3390/cryst14050438
Ting JU, Tan MCS, Ng VAS, Macalino SJY, Linis VC, Oyong GG. Molecular Simulations of Unexplored Philippine Plant Constituents on the Inhibition of the Proinflammatory Marker NF-κB p50 Subunit. Crystals. 2024; 14(5):438. https://doi.org/10.3390/cryst14050438
Chicago/Turabian StyleTing, Jasmine U., Maria Carmen S. Tan, Vincent Antonio S. Ng, Stephani Joy Y. Macalino, Virgilio C. Linis, and Glenn G. Oyong. 2024. "Molecular Simulations of Unexplored Philippine Plant Constituents on the Inhibition of the Proinflammatory Marker NF-κB p50 Subunit" Crystals 14, no. 5: 438. https://doi.org/10.3390/cryst14050438
APA StyleTing, J. U., Tan, M. C. S., Ng, V. A. S., Macalino, S. J. Y., Linis, V. C., & Oyong, G. G. (2024). Molecular Simulations of Unexplored Philippine Plant Constituents on the Inhibition of the Proinflammatory Marker NF-κB p50 Subunit. Crystals, 14(5), 438. https://doi.org/10.3390/cryst14050438