Reactive Magnetron Sputtering for Y-Doped Barium Zirconate Electrolyte Deposition in a Complete Protonic Ceramic Fuel Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elaboration Process
2.2. Characterization
3. Results and Discussion
3.1. Characterization of the Anodic Substrate
3.2. Study of Thin Electrolyte Layer Deposition by PVD
3.3. Study of the Cathode Part Deposited by Spray Coating
3.4. Impedance Measurement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Han, D.; Shinoda, K.; Sato, S.; Majima, M.; Uda, T. Correlation between Electroconductive and Structural Properties of Proton Conductive Acceptor-Doped Barium Zirconate. J. Mater. Chem. A 2015, 3, 1243–1250. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.H. Progress in Proton-conducting Oxides as Electrolytes for Low-temperature Solid Oxide Fuel Cells: From Materials to Devices. Energy Sci. Eng. 2021, 9, 984–1011. [Google Scholar] [CrossRef]
- Xu, X.; Bi, L.; Zhao, X.S. Highly-Conductive Proton-Conducting Electrolyte Membranes with a Low Sintering Temperature for Solid Oxide Fuel Cells. J. Membr. Sci. 2018, 558, 17–25. [Google Scholar] [CrossRef]
- Choi, S.; Kucharczyk, C.J.; Liang, Y.; Zhang, X.; Takeuchi, I.; Ji, H.-I.; Haile, S.M. Exceptional Power Density and Stability at Intermediate Temperatures in Protonic Ceramic Fuel Cells. Nat. Energy 2018, 3, 202–210. [Google Scholar] [CrossRef]
- Bae, K.; Kim, D.H.; Choi, H.J.; Son, J.-W.; Shim, J.H. High-Performance Protonic Ceramic Fuel Cells with 1 µm Thick Y:Ba(Ce,Zr)O3 Electrolytes. Adv. Energy Mater. 2018, 8, 1801315. [Google Scholar] [CrossRef]
- Bae, K.; Jang, D.Y.; Choi, H.J.; Kim, D.; Hong, J.; Kim, B.-K.; Lee, J.-H.; Son, J.-W.; Shim, J.H. Demonstrating the Potential of Yttrium-Doped Barium Zirconate Electrolyte for High-Performance Fuel Cells. Nat. Commun. 2017, 8, 14553. [Google Scholar] [CrossRef] [PubMed]
- Khani, Z.; Taillades-Jacquin, M.; Taillades, G.; Marrony, M.; Jones, D.J.; Rozière, J. New Synthesis of Nanopowders of Proton Conducting Materials. A Route to Densified Proton Ceramics. J. Solid State Chem. 2009, 182, 790–798. [Google Scholar] [CrossRef]
- Kek, D.; Bonanos, N. Investigation of Hydrogen Oxidation Reaction on a Metal/Perovskite Proton Conductor Interface by Impedance Spectroscopy. Vacuum 2001, 61, 453–457. [Google Scholar] [CrossRef]
- Fabbri, E.; Oh, T.; Licoccia, S.; Traversa, E.; Wachsman, E.D. Mixed Protonic/Electronic Conductor Cathodes for Intermediate Temperature SOFCs Based on Proton Conducting Electrolytes. J. Electrochem. Soc. 2009, 156, B38. [Google Scholar] [CrossRef]
- Nasani, N.; Dias, P.A.N.; Saraiva, J.A.; Fagg, D.P. Synthesis and Conductivity of Ba(Ce,Zr,Y)O3−δ Electrolytes for PCFCs by New Nitrate-Free Combustion Method. Int. J. Hydrogen Energy 2013, 38, 8461–8470. [Google Scholar] [CrossRef]
- Fabbri, E.; Pergolesi, D.; Traversa, E. Electrode Materials: A Challenge for the Exploitation of Protonic Solid Oxide Fuel Cells. Sci. Technol. Adv. Mater. 2010, 11, 044301. [Google Scholar] [CrossRef]
- Hossain, S.; Abdalla, A.M.; Jamain, S.N.B.; Zaini, J.H.; Azad, A.K. A Review on Proton Conducting Electrolytes for Clean Energy and Intermediate Temperature-Solid Oxide Fuel Cells. Renew. Sustain. Energy Rev. 2017, 79, 750–764. [Google Scholar] [CrossRef]
- Xu, X.; Bi, L. Proton-Conducting Electrolyte Materials. In Intermediate Temperature Solid Oxide Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2020; pp. 81–111. ISBN 978-0-12-817445-6. [Google Scholar]
- Grimaud, A.; Bassat, J.M.; Mauvy, F.; Simon, P.; Canizares, A.; Rousseau, B.; Marrony, M.; Grenier, J.C. Transport Properties and In-Situ Raman Spectroscopy Study of BaCe0.9Y0.1O3−δ as a Function of Water Partial Pressures. Solid State Ion. 2011, 191, 24–31. [Google Scholar] [CrossRef]
- Bi, L.; Tao, Z.; Liu, C.; Sun, W.; Wang, H.; Liu, W. Fabrication and Characterization of Easily Sintered and Stable Anode-Supported Proton-Conducting Membranes. J. Membr. Sci. 2009, 336, 1–6. [Google Scholar] [CrossRef]
- Kreuer, K.D. Proton-Conducting Oxides. Annu. Rev. Mater. Res. 2003, 33, 333–359. [Google Scholar] [CrossRef]
- Rashid, N.L.R.M.; Samat, A.A.; Jais, A.A.; Somalu, M.R.; Muchtar, A.; Baharuddin, N.A.; Isahak, W.N.R.W. Review on Zirconate-Cerate-Based Electrolytes for Proton-Conducting Solid Oxide Fuel Cell. Ceram. Int. 2019, 45, 6605–6615. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, W.; Wang, Z.; Qian, J.; Liu, W. Samarium and Yttrium Codoped BaCeO3 Proton Conductor with Improved Sinterability and Higher Electrical Conductivity. ACS Appl. Mater. Interfaces 2014, 6, 5175–5182. [Google Scholar] [CrossRef]
- Akimune, Y.; Matsuo, K.; Higashiyama, H.; Honda, K.; Yamanaka, M.; Uchiyama, M.; Hatano, M. Nano-Ag Particles for Electrodes in a Yttria-Doped BaCeO3 Protonic Conductor. Solid State Ion. 2007, 178, 575–579. [Google Scholar] [CrossRef]
- Yahia, H.B.; Mauvy, F.; Grenier, J.C. Ca3−xLaxCo4O9+δ (X = 0, 0.3): New Cobaltite Materials as Cathodes for Proton Conducting Solid Oxide Fuel Cell. J. Solid State Chem. 2010, 183, 527–531. [Google Scholar] [CrossRef]
- Ryu, K.H.; Haile, S.M. Chemical Stability and Proton Conductivity of Doped BaCeO3–BaZrO3 Solid Solutions. Solid State Ion. 1999, 125, 355–367. [Google Scholar] [CrossRef]
- Münch, W. Proton Diffusion in Perovskites: Comparison between BaCeO3, BaZrO3, SrTiO3, and CaTiO3 Using Quantum Molecular Dynamics. Solid State Ion. 2000, 136–137, 183–189. [Google Scholar] [CrossRef]
- Matsumoto, H.; Kawasaki, Y.; Ito, N.; Enoki, M.; Ishihara, T. Relation Between Electrical Conductivity and Chemical Stability of BaCeO3-Based Proton Conductors with Different Trivalent Dopants. Electrochem. Solid-State Lett. 2007, 10, B77. [Google Scholar] [CrossRef]
- Kim, D.; Lee, D.; Joo, J.H. Effect of Y-Doping on the Phase Relation and Electrical Properties of Fe-Doped BaZrO3. J. Eur. Ceram. Soc. 2018, 38, 535–542. [Google Scholar] [CrossRef]
- Fabbri, E.; Bi, L.; Pergolesi, D.; Traversa, E. Towards the Next Generation of Solid Oxide Fuel Cells Operating below 600 °C with Chemically Stable Proton-Conducting Electrolytes. Adv. Mater. 2012, 24, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Uda, T. The Best Composition of an Y-Doped BaZrO3 Electrolyte: Selection Criteria from Transport Properties, Microstructure, and Phase Behavior. J. Mater. Chem. A 2018, 6, 18571–18582. [Google Scholar] [CrossRef]
- Dai, H.; Kou, H.; Wang, H.; Bi, L. Electrochemical Performance of Protonic Ceramic Fuel Cells with Stable BaZrO3-Based Electrolyte: A Mini-Review. Electrochem. Commun. 2018, 96, 11–15. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kang, Y.-M.; Byun, M.-S.; Hwang, K.-T. Study on the Chemical Stability of Y-Doped BaCeO3−δ and BaZrO3−δ Films Deposited by Aerosol Deposition. Thin Solid Films 2011, 520, 1015–1021. [Google Scholar] [CrossRef]
- Tong, J.; Clark, D.; Bernau, L.; Sanders, M.; O’Hayre, R. Solid-State Reactive Sintering Mechanism for Large-Grained Yttrium-Doped Barium Zirconate Proton Conducting Ceramics. J. Mater. Chem. 2010, 20, 6333. [Google Scholar] [CrossRef]
- Fabbri, E.; Pergolesi, D.; Traversa, E. Materials Challenges toward Proton-Conducting Oxide Fuel Cells: A Critical Review. Chem. Soc. Rev. 2010, 39, 4355. [Google Scholar] [CrossRef]
- Loureiro, F.J.A.; Nasani, N.; Reddy, G.S.; Munirathnam, N.R.; Fagg, D.P. A Review on Sintering Technology of Proton Conducting BaCeO3-BaZrO3 Perovskite Oxide Materials for Protonic Ceramic Fuel Cells. J. Power Sources 2019, 438, 226991. [Google Scholar] [CrossRef]
- Katahira, K.; Kohchi, Y.; Shimura, T.; Iwahara, H. Protonic Conduction in Zr-Substituted BaCeO3. Solid State Ion. 2000, 138, 91–98. [Google Scholar] [CrossRef]
- Zhong, Z. Stability and Conductivity Study of the BaCe0.9−xZrxY0.1O2.95 Systems. Solid State Ion. 2007, 178, 213–220. [Google Scholar] [CrossRef]
- Pergolesi, D.; Fabbri, E.; D’Epifanio, A.; Di Bartolomeo, E.; Tebano, A.; Sanna, S.; Licoccia, S.; Balestrino, G.; Traversa, E. High Proton Conduction in Grain-Boundary-Free Yttrium-Doped Barium Zirconate Films Grown by Pulsed Laser Deposition. Nat. Mater. 2010, 9, 846–852. [Google Scholar] [CrossRef]
- Zakaria, Z.; Awang Mat, Z.; Abu Hassan, S.H.; Boon Kar, Y. A Review of Solid Oxide Fuel Cell Component Fabrication Methods toward Lowering Temperature. Int. J. Energy Res. 2020, 44, 594–611. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, F.; Wang, D.; Jin, Z. Alternative Preparation Methods of Thin Films for Solid Oxide Fuel Cells: Review. Mater. Technol. 2020, 35, 212–227. [Google Scholar] [CrossRef]
- Nasani, N.; Ramasamy, D.; Brandão, A.D.; Yaremchenko, A.A.; Fagg, D.P. The Impact of Porosity, pH2 and pH2O on the Polarisation Resistance of Ni–BaZr0.85Y0.15O3−δ Cermet Anodes for Protonic Ceramic Fuel Cells (PCFCs). Int. J. Hydrogen Energy 2014, 39, 21231–21241. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Z.; Mori, T.; Jiang, S.P. Development of Nickel Based Cermet Anode Materials in Solid Oxide Fuel Cells—Now and Future. Mater. Rep. Energy 2021, 1, 100003. [Google Scholar] [CrossRef]
- Coors, W.G.; Manerbino, A. Characterization of Composite Cermet with 68 wt.% NiO and BaCe0.2Zr0.6Y0.2O3−δ. J. Membr. Sci. 2011, 376, 50–55. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, M.; Chen, M.; Cao, D.; Shao, J.; Liu, M.; Liu, J. A High-Performance Intermediate-to-Low Temperature Protonic Ceramic Fuel Cell with in-Situ Exsolved Nickel Nanoparticles in the Anode. Ceram. Int. 2020, 46, 19952–19959. [Google Scholar] [CrossRef]
- Nasani, N.; Ramasamy, D.; Antunes, I.; Perez, J.; Fagg, D.P. Electrochemical Behaviour of Ni-BZO and Ni-BZY Cermet Anodes for Protonic Ceramic Fuel Cells (PCFCs)—A Comparative Study. Electrochim. Acta 2015, 154, 387–396. [Google Scholar] [CrossRef]
- Wang, S.; Shen, J.; Zhu, Z.; Wang, Z.; Cao, Y.; Guan, X.; Wang, Y.; Wei, Z.; Chen, M. Further Optimization of Barium Cerate Properties via Co-Doping Strategy for Potential Application as Proton-Conducting Solid Oxide Fuel Cell Electrolyte. J. Power Sources 2018, 387, 24–32. [Google Scholar] [CrossRef]
- Yang, L.; Zuo, C.; Wang, S.; Cheng, Z.; Liu, M. A Novel Composite Cathode for Low-Temperature SOFCs Based on Oxide Proton Conductors. Adv. Mater. 2008, 20, 3280–3283. [Google Scholar] [CrossRef]
- Ricote, S.; Bonanos, N.; Rørvik, P.M.; Haavik, C. Microstructure and Performance of La0.58Sr0.4Co0.2Fe0.8O3−δ Cathodes Deposited on BaCe0.2Zr0.7Y0.1O3−δ by Infiltration and Spray Pyrolysis. J. Power Sources 2012, 209, 172–179. [Google Scholar] [CrossRef]
- Løken, A.; Ricote, S.; Wachowski, S. Thermal and Chemical Expansion in Proton Ceramic Electrolytes and Compatible Electrodes. Crystals 2018, 8, 365. [Google Scholar] [CrossRef]
- Dailly, J.; Ancelin, M.; Marrony, M. Long Term Testing of BCZY-Based Protonic Ceramic Fuel Cell PCFC: Micro-Generation Profile and Reversible Production of Hydrogen and Electricity. Solid State Ion. 2017, 306, 69–75. [Google Scholar] [CrossRef]
- Shi, H.; Yang, G.; Liu, Z.; Zhang, G.; Ran, R.; Shao, Z.; Zhou, W.; Jin, W. High Performance Tubular Solid Oxide Fuel Cells with BSCF Cathode. Int. J. Hydrogen Energy 2012, 37, 13022–13029. [Google Scholar] [CrossRef]
- Toprak, M.S.; Darab, M.; Syvertsen, G.E.; Muhammed, M. Synthesis of Nanostructured BSCF by Oxalate Co-Precipitation—As Potential Cathode Material for Solid Oxide Fuels Cells. Int. J. Hydrogen Energy 2010, 35, 9448–9454. [Google Scholar] [CrossRef]
- Ma, Y.; He, B.; Wang, J.; Cheng, M.; Zhong, X.; Huang, J. Porous/Dense Bilayer BaZr0.8Y0.2O3 −δ Electrolyte Matrix Fabricated by Tape Casting Combined with Solid-State Reactive Sintering for Protonic Ceramic Fuel Cells. Int. J. Hydrogen Energy 2021, 46, 9918–9926. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y. Multilayer Tape Casting of Large-Scale Anode-Supported Thin-Film Electrolyte Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2019, 44, 16976–16982. [Google Scholar] [CrossRef]
- Yazdi, M.A.P.; Briois, P.; Billard, A. Influence of the Annealing Conditions on the Structure of BaCe1−xYxO3−α Coatings Elaborated by DC Magnetron Sputtering at Room Temperature. Mater. Chem. Phys. 2009, 117, 178–182. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, L.; Yuan, H.; Ji, L.; Xiong, C.; Ma, J.; Zhu, X. Fabrication and Characterization of BaZr0.1Ce0.7Y0.2O3−δ Based Anode Supported Solid Oxide Fuel Cells by Tape Casting Combined with Spray Coating. Mater. Lett. 2017, 189, 192–195. [Google Scholar] [CrossRef]
- Bi, L.; Traversa, E. Synthesis Strategies for Improving the Performance of Doped-BaZrO3 Materials in Solid Oxide Fuel Cell Applications. J. Mater. Res. 2014, 29, 1–15. [Google Scholar] [CrossRef]
- Han, D.; Jiang, L.; Zhong, P. Improving Phase Compatibility between Doped BaZrO3 and NiO in Protonic Ceramic Cells via Tuning Composition and Dopant. Int. J. Hydrogen Energy 2021, 46, 8767–8777. [Google Scholar] [CrossRef]
- Dayaghi, A.M.; Haugsrud, R.; Stange, M.; Larring, Y.; Strandbakke, R.; Norby, T. Increasing the Thermal Expansion of Proton Conducting Y-Doped BaZrO3 by Sr and Ce Substitution. Solid State Ion. 2021, 359, 115534. [Google Scholar] [CrossRef]
- Lescure, V.; Gelin, M.; François, M.; Arab Pour Yazdi, M.; Briois, P.; Demoisson, F.; Combemale, L.; Valton, S.; Caboche, G. X-Ray Micro-Computed Tomography: A Powerful Device to Analyze the 3D Microstructure of Anode-Electrolyte in BaZr0.8Y0.2O3 Protonic Ceramic Electrochemical Cells and the Reduction Behavior. Membranes 2022, 12, 68. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.D.; Maram, P.S.; Navrotsky, A.; Muccillo, R. Effect of Synthesis Atmosphere on the Proton Conductivity of Y-Doped Barium Zirconate Solid Electrolytes. Ceram. Int. 2016, 42, 13689–13696. [Google Scholar] [CrossRef]
- Babilo, P.; Uda, T.; Haile, S.M. Processing of Yttrium-Doped Barium Zirconate for High Proton Conductivity. J. Mater. Res. 2007, 22, 1322–1330. [Google Scholar] [CrossRef]
- Qin, G.; Bao, J.; Gao, J.; Ruan, F.; An, S.; Wang, Z.; Li, L. Enhanced Grain Boundary Conductivity of Gd and Sc Co-Doping BaZrO3 Proton Conductor for Proton Ceramic Fuel Cell. Chem. Eng. J. 2023, 466, 143114. [Google Scholar] [CrossRef]
- Fang, S.; Wang, S.; Brinkman, K.S.; Su, Q.; Wang, H.; Chen, F. Relationship between Fabrication Method and Chemical Stability of Ni–BaZr0.8Y0.2O3− Membrane. J. Power Sources 2015, 278, 614–622. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Liu, M.; Tang, Z.; Liu, M. Enhanced Sinterability of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ by Addition of Nickel Oxide. J. Power Sources 2011, 196, 9980–9984. [Google Scholar] [CrossRef]
- Arvanitidis, I.; Sichen, D.; Seetharaman, S. A Study of the Thermal Decomposition of BaCO3. Metall. Mater. Trans. B 1996, 27, 409–416. [Google Scholar] [CrossRef]
- Choi, S.M.; Lee, J.-H.; Hong, J.; Kim, H.; Yoon, K.J.; Kim, B.-K.; Lee, J.-H. Effect of Sintering Atmosphere on Phase Stability, and Electrical Conductivity of Proton-Conducting Ba(Zr0.84Y0.15Cu0.01)O3−. Int. J. Hydrogen Energy 2014, 39, 7100–7108. [Google Scholar] [CrossRef]
- François, M.; Carpanese, M.P.; Heintz, O.; Lescure, V.; Clematis, D.; Combemale, L.; Demoisson, F.; Caboche, G. Chemical Degradation of the La0.6Sr0.4Co0.2Fe0.8O3−δ/Ce0.8Sm0.2O2−δ Interface during Sintering and Cell Operation. Energies 2021, 14, 3674. [Google Scholar] [CrossRef]
- Imashuku, S.; Uda, T.; Awakura, Y. Sintering Properties of Trivalent Cation-Doped Barium Zirconate at 1600 °C. Electrochem. Solid-State Lett. 2007, 10, B175. [Google Scholar] [CrossRef]
- Kim, D.; Lee, T.K.; Han, S.; Jung, Y.; Lee, D.G.; Choi, M.; Lee, W. Advances and Challenges in Developing Protonic Ceramic Cells. Mater. Today Energy 2023, 36, 101365. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Hernandez-Sanchez, R.; Haile, S.M. Cation Non-Stoichiometry in Yttrium-Doped Barium Zirconate: Phase Behavior, Microstructure, and Proton Conductivity. J. Mater. Chem. 2010, 20, 8158. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Challali, F.; Mendil, D.; Touam, T.; Chauveau, T.; Bockelée, V.; Sanchez, A.G.; Chelouche, A.; Besland, M.-P. Effect of RF Sputtering Power and Vacuum Annealing on the Properties of AZO Thin Films Prepared from Ceramic Target in Confocal Configuration. Mater. Sci. Semicond. Process. 2020, 118, 105217. [Google Scholar] [CrossRef]
- Zoppi, G.; Beattie, N.S.; Major, J.D.; Miles, R.W.; Forbes, I. Electrical, Morphological and Structural Properties of RF Magnetron Sputtered Mo Thin Films for Application in Thin Film Photovoltaic Solar Cells. J. Mater. Sci. 2011, 46, 4913–4921. [Google Scholar] [CrossRef]
- Dong, X.; Su, Y.; Wu, Z.; Xu, X.; Xiang, Z.; Shi, Y.; Chen, W.; Dai, J.; Huang, Z.; Wang, T.; et al. Reactive Pulsed DC Magnetron Sputtering Deposition of Vanadium Oxide Thin Films: Role of Pulse Frequency on the Film Growth and Properties. Appl. Surf. Sci. 2021, 562, 150138. [Google Scholar] [CrossRef]
- Lin, J.; Stinnett, T.C. Development of Thermal Barrier Coatings Using Reactive Pulsed Dc Magnetron Sputtering for Thermal Protection of Titanium Alloys. Surf. Coat. Technol. 2020, 403, 126377. [Google Scholar] [CrossRef]
- Arab Pour Yazdi, M.; Briois, P.; Georges, S.; Costa, R.; Billard, A. Characterization of PCFC-Electrolytes Deposited by Reactive Magnetron Sputtering; Comparison with Ceramic Bulk Samples. Fuel Cells 2013, 13, 549–555. [Google Scholar] [CrossRef]
- Anders, A. A Structure Zone Diagram Including Plasma-Based Deposition and Ion Etching. Thin Solid Films 2010, 518, 4087–4090. [Google Scholar] [CrossRef]
- Pergolesi, D.; Fabbri, E.; Traversa, E. Chemically Stable Anode-Supported Solid Oxide Fuel Cells Based on Y-Doped Barium Zirconate Thin Films Having Improved Performance. Electrochem. Commun. 2010, 12, 977–980. [Google Scholar] [CrossRef]
- Shao, Z.; Haile, S.M. A High-Performance Cathode for the next Generation of Solid-Oxide Fuel Cells. Nature 2004, 431, 170–173. [Google Scholar] [CrossRef] [PubMed]
BZY | NiO | EtOH | MEK | TEA | PVB | PEG | BBP |
---|---|---|---|---|---|---|---|
24 | 36 | 14.4 | 14.4 | 3.15 | 11.1 | 2.25 | 2.25 |
BZY | BSCF | Graphite | EtOH | TEA | PVB | PEG | BBP |
---|---|---|---|---|---|---|---|
5 | 5 | 0.4 | 50 | 0.106 | 1.2 | 1.2 | 0.75 |
Ba (A Site) at% | Zr (B Site) at% | Y (B Site) at% | Ratio (A Site)/(B Site) | |
---|---|---|---|---|
Theoretical values | 1.00 | 0.80 | 0.20 | 1 |
Without BZY sacrificial powder | 0.89 ± 0.08 | 0.79 ± 0.07 | 0.21 ± 0.07 | 0.89 |
With BZY sacrificial powder | 1.00 ± 0.05 | 0.89 ± 0.02 | 0.11 ± 0.02 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lescure, V.; François, M.; Charleux, M.; Aubry, E.; Combemale, L.; Briois, P.; Caboche, G. Reactive Magnetron Sputtering for Y-Doped Barium Zirconate Electrolyte Deposition in a Complete Protonic Ceramic Fuel Cell. Crystals 2024, 14, 475. https://doi.org/10.3390/cryst14050475
Lescure V, François M, Charleux M, Aubry E, Combemale L, Briois P, Caboche G. Reactive Magnetron Sputtering for Y-Doped Barium Zirconate Electrolyte Deposition in a Complete Protonic Ceramic Fuel Cell. Crystals. 2024; 14(5):475. https://doi.org/10.3390/cryst14050475
Chicago/Turabian StyleLescure, Victoire, Mélanie François, Maëlys Charleux, Eric Aubry, Lionel Combemale, Pascal Briois, and Gilles Caboche. 2024. "Reactive Magnetron Sputtering for Y-Doped Barium Zirconate Electrolyte Deposition in a Complete Protonic Ceramic Fuel Cell" Crystals 14, no. 5: 475. https://doi.org/10.3390/cryst14050475