An Effect of Boric Acid on the Structure and Luminescence of Yttrium Orthoborates Doped with Europium Synthesized by Two Different Routines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Analysis
2.2.1. XRD Analysis
2.2.2. FT-IR Analysis
2.2.3. Photoluminescent Analysis
3. Results
3.1. Structural Characterization
3.2. Photoluminescent Properties
- Orange emission (5D0 → 7F1): A peak at 591 nm was identified, corresponding to the 5D0 → 7F1 transition, resulting in orange emission.
- Red emission (5D0 → 7F2): Peaks at 612 nm and 620 nm were observed, corresponding to the 5D0 → 7F2 transition, resulting in red emission.
- Transition intensity and matrix influence:
- When Eu3+ ions occupy inversion center sites, the 5D0 → 7F1 transitions were expected to be relatively strong, while the 5D0 → 7F2 transitions were relatively weak.
- The transition 5D0 → 7F1 due to the magnetic dipole is independent of the host matrix, whereas the 5D0 → 7F2 transition allowed by the electric dipole is strongly influenced by the local structure.
- Emission intensity ratio (R/O Ratio):
- The emission intensity ratio between red and orange color transitions, denoted as R/O (I(5D0 → 7F2)/I(5D0 → 7F1)), was calculated by considering the sum of the integral intensities of the red emission peak observed at 612 nm for the contribution of the 5D0/7F2 transition. The intensities of the different 5D0–7FJ transitions and the splitting of these emission peaks depend on the local symmetry of the crystal field of the Eu3+ ion. If the Eu3+ ion occupies a centrosymmetric site in the crystal lattice, the magnetic dipole transition 5D0–7F1 (orange) is the dominant transition; otherwise, the electric dipole transition 5D0–7F2 (red) becomes dominant.
- This ratio, also known as the asymmetric ratio, color purity, or red-to-orange emission ratio, provides insights into the relative strengths of the red and orange emissions. YBO3:Eu3+ has a hexagonal structure of the vaterite type, with Eu3+ ions occupying the Y3+ site, which has point symmetry S 6. As a result, the orange emission at 592 nm from the 5D0 = 7F1 transition is dominant, leading to a lower value of the intensity ratio (R/O) between red and orange emission. Good color purity requires a high R/O value, and thus, many studies aim to improve this ratio.
- Emission at 696 nm corresponds to the 5D0 → 7F4 electronic transition whose intensity is comparable to that of the 612 nm peak for 396 nm excitation and considerably lower for 260 nm excitation.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Plewa, J.; Jüstel, T. Phase transition of YBO3. J. Therm. Anal. Calorim. 2007, 88, 531–535. [Google Scholar] [CrossRef]
- Fuchs, B.; Schröder, F.; Heymann, G.; Siegel, R.; Senker, J.; Jüstel, T.; Huppertz, H. Crystal structure re-determination, spectroscopy, and photoluminescence of π-YBO3:Eu3+. Z. Anorg. Allg. Chem. 2021, 647, 2035–2046. [Google Scholar] [CrossRef]
- Sevim, F.; Demir, F.; Bilen, M.; Okur, H. Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data. Korean J. Chem. Eng. 2006, 23, 736–740. [Google Scholar] [CrossRef]
- Harabor, A.; Rotaru, P.; Scorei, R.I.; Harabor, N.A. Non-conventional hexagonal structure for boric acid. J. Therm. Anal. Calorim. 2014, 118, 1375–1384. [Google Scholar] [CrossRef]
- Huber, C.; Jahromy, S.S.; Birkelbach, F.; Weber, J.; Jordan, C.; Schreiner, M.; Harasek, M.; Winter, F. The multistep decomposition of boric acid. Energy Sci. Eng. 2020, 8, 1650–1666. [Google Scholar] [CrossRef]
- Ben Smida, Y.; Marzouki, R.; Kaya, S.; Erkan, S.; Faouzi Zid, M.; Hichem Hamzaoui, A. Synthesis Methods in Solid-State Chemistry. In Synthesis Methods and Crystallization; Marzouki, R., Ed.; InTech Open: London, UK, 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Kitchen, H.J.; Vallance, S.R.; Kennedy, J.L.; Tapia-Ruiz, N.; Carassiti, L.; Harrison, A.; Gregory, D.H. Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing. Chem. Rev. 2013, 114, 1170–1206. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.W.; Hsu, C.H.; Chen, F.S.; Lu, C.H. Microwave-assisted solvothermal preparation and photoluminescence properties of Y2O3:Eu3+ phosphors. Ceram. Int. 2012, 38, 1577–1584. [Google Scholar] [CrossRef]
- Boyer, D.; Bertrand-Chadeyron, G.; Mahiou, R.; Brioude, A.; Mugnier, J. Synthesis and characterization of sol–gel derived Y3BO6:Eu3+ powders and films. Opt. Mater. 2003, 24, 35–41. [Google Scholar] [CrossRef]
- Maia, L.J.Q.; Mastelaro, V.R.; Pairis, S.; Hernandes, A.C.; Ibanez, A. A sol–gel route for the development of rare-earth aluminum borate nanopowders and transparent thin films. J. Solid State Chem. 2007, 180, 611–618. [Google Scholar] [CrossRef]
- Gangwar, A.K.; Nagpal, K.; Kumar, P.; Singh, N.; Gupta, B.K. New insight into printable europium-doped yttrium borate luminescent pigment for security ink applications. J. Appl. Phys. 2019, 125, 074903. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, Y.; Zhao, Z.; Yang, J.; Li, N.; Zhang, M. Statistical design for the optimization of the red to orange ratio in YBO3:Eu3+ phosphors. J. Lumin. 2018, 194, 311–315. [Google Scholar] [CrossRef]
- Novotný, M.; Remsa, J.; Havlová, Š.; More-Chevalier, J.; Irimiciuc, S.A.; Chertopalov, S.; Písařík, P.; Volfová, L.; Fitl, P.; Kmječ, T.; et al. In Situ Monitoring of Pulsed Laser Annealing of Eu-Doped Oxide Thin Films. Materials 2021, 14, 7576. [Google Scholar] [CrossRef]
- Nayak, B.B.; Srivastava, S.; Singh, A.K.; Behera, S.K. Influence of high energy milling on powder morphology and photoluminescence behavior of Eu-doped YBO3 material. Mater. Chem. Phys. 2020, 254, 123429. [Google Scholar] [CrossRef]
- Rafiaei, S. The luminescence properties of yttria based phosphors and study of YBO3 formation via H3BO3 addition. Process. Appl. Ceram. 2018, 12, 262–267. [Google Scholar] [CrossRef]
- Rafiaei, S.M.; Kim, A.; Shokouhimehr, M. Enhanced luminescence properties of combustion synthesized Y2O3:Gd nanostructure. Current. Nanosci. 2016, 12, 244–249. [Google Scholar] [CrossRef]
- Chadeyron, G.; El-Ghozzi, M.; Mahiou, R.; Arbus, A.; Cousseins, J.C. Revised Structure of the Orthoborate YBO3. J. Solid State Chem. 1997, 128, 261. [Google Scholar] [CrossRef]
- Medvedev, E.F.; Komarevskaya, A.S. IR spectroscopic study of the phase composition of boric acid as a component of glass batch. Glass Ceram. 2007, 64, 42–46. [Google Scholar] [CrossRef]
- Vlasov, A.G.; Florinskaya, V.A. (Eds.) Structure and Physicochemical Properties of Inorganic Glasses; Khimiya: Leningrad, Russia, 1974. (In Russian) [Google Scholar]
- Kazuo, N. Infrared and Raman Spectra of Inorganic and Coordination Compounds. In Theory and Applications in Inorganic Chemistry, 6th ed.; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Stefanovskii, S.V.; Ivanov, I.A.; Gulin, A.N. IR and EPR spectra of aluminoborosilicate and aluminophosphate glasses simulating vitrified radioactive wastes. Fiz. Khim. Stekla 1991, 17, 120–125. [Google Scholar]
- Beregi, E.; Watterich, A.; Kovács, L.; Madarász, J. Solid-state reactions in Y2O3:3Al2O3:4B2O3 system studied by FTIR spectroscopy and X-ray diffraction. Vib. Spectrosc. 2000, 22, 169–173. [Google Scholar] [CrossRef]
- Onani, M.O.; Okil, J.O.; Dejene, F.B. Solution–combustion synthesis and photoluminescence properties of YBO3:Tb3+ phosphor powders. Phys. B Condens. Matter 2014, 439, 133–136. [Google Scholar] [CrossRef]
- Schott, J.; Kretzschmar, J.; Acker, M.; Eidner, S.; Kumke, M.; Drobot, B.; Barkleit, A.; Taut, S.; Brendlera, V.; Stumpfa, T. Formation of a Eu(III) borate solid species from a weak Eu(III) borate complex in aqueous solution. Dalton Trans. 2014, 43, 11516. [Google Scholar] [CrossRef] [PubMed]
- Miranda de Carvalho, J.; Pedroso, C.C.S.; Saula, M.S.d.N.; Felinto, M.C.F.C.; Brito, H.F.d. Microwave-Assisted Preparation of Luminescent Inorganic Materials: A Fast Route to Light Conversion and Storage Phosphors. Molecules 2021, 26, 2882. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, M.V.; Kang, J.H.; Jeon, D.Y.; Popovici, E.J.; Muresan, L.; Tsukerblat, B.S. Lattice parameter and luminescence properties of europium activated yttrium oxide. Solid State Commun. 2005, 133, 183–186. [Google Scholar] [CrossRef]
- Anitha, M.; Mohapatra, M.; Kadam, R.M.; Seshagiri, T.K.; Tyagi, A.K.; Natarajan, V. Thermally stimulated luminescence and electron paramagnetic resonance studies of Eu3+-doped yttrium borate. J. Mater. Res. 2006, 21, 1117–1123. [Google Scholar] [CrossRef]
- Zhang, F.; Bian, G.; Ding, H.; Tang, J.; Li, X.; Zhang, C.; Li, S.; Jia, G. Controllable synthesis and tunable luminescence of yttrium orthoborate microcrystals with multiform morphologies and dimensions. J. Lumin. 2020, 219, 116890. [Google Scholar] [CrossRef]
- Hristova, K.; Kostova, I.P.; Eftimov, T.A.; Brabant, D.; Fouzar, S. Rare-Earth-Ion (RE3+)-Doped Aluminum and Lanthanum Borates for Mobile-Phone-Interrogated Luminescent Markers. Photonics 2024, 11, 434. [Google Scholar] [CrossRef]
Sample Code, Series SS | Sample Code, Series MW | Amount of Y2O3 (g) | Amount of Eu(SO4)2.8H2O (g) | H3BO3, g (% Excess) |
---|---|---|---|---|
S20 SS | S20 MW | 0.6446 | 0.1472 | 0.3537 (0%) |
S21 SS | S21 MW | 0.3713 (5%) | ||
S22 SS | S22 MW | 0.3891 (10%) | ||
S23 SS | S23 MW | 0.4067 (15%) | ||
S24 SS | S24 MW | 0.4244 (20%) | ||
S25 SS | S25 MW | 0.4421 (25%) | ||
S26 SS | S26 MW | 0.4598 (30%) | ||
S27 SS | S27 MW | 0.4772 (35%) | ||
S28 SS | S28 MW | 0.4949 (40%) | ||
S29 SS | S29 MW | 0.5126 (45%) | ||
S210 SS | S210 MW | 0.5303 (50%) | ||
S211 SS | S211 MW | 0.5479 (55%) | ||
S212 SS | S212 MW | 0.5656 (60%) |
Bands cm−1 | Boric Acid | Yttrium Oxide | S20 | S0 MW |
---|---|---|---|---|
Y–O | 464 | 464 | ||
δ([BO3]–O) δ(B–O), in-plane O–B–O angle deformation mode | 547 | |||
v (Y–O in Y2O3) | 561 | 563 | ||
γ([BO3]=O) γ(O=H), out-of-plane OH deformation mode | 647 broadening | |||
v4 ([BO3]3−) orv([B(O, OH)4]) | 676 | |||
δ(B–O–B) | 711 | 711 | ||
γ(B=O), out-of-plane BO3 angle deformation mode γ(O=H), twisting | 792 | |||
ring stretching | 873 | |||
ring stretching | 878 | |||
vs(–O–B<) | 884 | |||
ring stretching | 916 | |||
ring stretching | 919 | |||
terminal B–O stretching | 1058 | |||
terminal B–O stretching | 1069 | |||
vas([–O–B<]–O) δ(O–H), in-plane B=O=H angle deformation mode | 1195 | |||
isolated [BO] | 1203 | |||
shoulder | 1225 | |||
isolated [BO3]3− | 1307 | |||
vas(–B–O) | 1470 | |||
No B–O modes (adsorbed gaseous CO2), B2O3 impurities or combination frequencies of ν(O–H), ν(B–O), δ(O–H), δ(B–O) [24] | 2000 | |||
2031 | ||||
2261 | ||||
2361 | ||||
v(–O–H) from absorbed water | 2518 | |||
v(–O–H) from water | 3222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostova, I.P.; Eftimov, T.A.; Hristova, K.; Nachkova, S.; Tsoneva, S.; Peltekov, A. An Effect of Boric Acid on the Structure and Luminescence of Yttrium Orthoborates Doped with Europium Synthesized by Two Different Routines. Crystals 2024, 14, 575. https://doi.org/10.3390/cryst14060575
Kostova IP, Eftimov TA, Hristova K, Nachkova S, Tsoneva S, Peltekov A. An Effect of Boric Acid on the Structure and Luminescence of Yttrium Orthoborates Doped with Europium Synthesized by Two Different Routines. Crystals. 2024; 14(6):575. https://doi.org/10.3390/cryst14060575
Chicago/Turabian StyleKostova, Irena P., Tinko A. Eftimov, Katya Hristova, Stefka Nachkova, Slava Tsoneva, and Alexandar Peltekov. 2024. "An Effect of Boric Acid on the Structure and Luminescence of Yttrium Orthoborates Doped with Europium Synthesized by Two Different Routines" Crystals 14, no. 6: 575. https://doi.org/10.3390/cryst14060575
APA StyleKostova, I. P., Eftimov, T. A., Hristova, K., Nachkova, S., Tsoneva, S., & Peltekov, A. (2024). An Effect of Boric Acid on the Structure and Luminescence of Yttrium Orthoborates Doped with Europium Synthesized by Two Different Routines. Crystals, 14(6), 575. https://doi.org/10.3390/cryst14060575