Study on the Preparation and Optical Properties of Ce3+ Doped GdAlO3 Nanoparticles by Co-Precipitation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Synthesis Process
2.2. Characterization
3. Results
3.1. TG-DTA Analysis of Precursors
3.2. Influence of Phase and Morphology of GdAlO3:Ce by Calcination Temperature
3.3. The Impact of Dispersant Concentration on GdAlO3:Ce
3.4. Effect of Ce3+ Dopant Content on GdAlO3:Ce Nanoparticles
3.5. Effect of Ce3+ Dopant Content on Luminescence Characteristics
4. Conclusions
- Nano GdAlO3:Ce powder exhibiting excellent dispersion and an almost spherical shape could be synthesized via the co-precipitation technique. In this process, sodium dodecylbenzene sulfonate was utilized as a dispersant at a mass fraction of 2%, and ammonia served as the precipitant. The resulting powder was then calcined at 1300 °C for a duration of 2 h.
- Ce3+ doping caused GdAlO3 lattice distortion, but it did not change its crystal structure. When the Ce3+ dopant content was 0.9 mol%, the emission spectral intensity of GdAlO3:Ce was the strongest after excitation. Concentration quenching occurred when the Ce3+ dopant content exceeded this concentration.
- In the spectral analysis, GdAlO3:Ce had two wide excitation spectra, and the highest peaks were located at wavelengths of 381 nm and 431 nm. The formation mechanism of GdAlO3:Ce luminescence due to the transition of 5d → 2F5/2 and 5d → 2F7/2 luminescence energy bands after doping Ce3+ was excited.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tamrakar, R.K.; Tiwari, S.; Upadhyay, K.; Robinson, C.S. Synthesis, structural and luminescent properties of Eu2+/ Dy3+ activated GdAlO3 phosphors by solid state reaction method under nitrogen atmosphere. Optik 2019, 181, 1158–1162. [Google Scholar] [CrossRef]
- Ku, A.; Rkt, B. Enhancement in photoluminescence behaviour of GdAlO3: Eu3+ phosphor by alkali metal codoping-ScienceDirect. Nano-Struct. Nano-Objects 2019, 7, 100357. [Google Scholar]
- Qi, P.Y.; Cong, Y.; Yu, L.H.; Fu, X.W.; Ge, X.M.; Hao, C.L.; He, L.J. Effect of co-precipitation synthesis parameters on gadolinium aluminate nanoparticles. Mater. Lett. 2023, 341, 134163. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.K.; Wang, W.Z. Synthesis and luminescence properties of Tb3+/Eu3+ co-doped GdAlO3 phosphors with enhanced red emission. J. Rare Earths 2018, 9, 924–930. [Google Scholar] [CrossRef]
- Teng, X.; Li, J.; Duan, G.B.; Liu, Z.M. Development of Tb3+ activated gadolinium aluminate garnet (Gd3Al5O12) as highly efficient green-emitting phosphors. J. Lumin. 2016, 179, 165–170. [Google Scholar] [CrossRef]
- Mareš, J.A.; Nikl, M.; Pedrini, C.; Bouttet, D.; Dujardin, C.; Moine, B.; Verweij, J.W.M.; Kvapil, J. Further results on GdAlO3:Ce scintillator. Radiat. Eff. Defects Solids 2006, 135, 369–373. [Google Scholar] [CrossRef]
- Qi, P.Y.; Zhong, J.Y.; Dai, S.Y.; Jiang, L.L. Hydrothermal-solid state synthesis of gadolinium aluminate nano whiskers with alkaline mineralizer. Mater. Res. Express 2020, 7, 035021. [Google Scholar] [CrossRef]
- Karpyuk, P.V.; Ermakova, L.V.; Dubov, V.V.; Lelekova, D.E.; Saifutyarov, R.R.; Zhdanov, P.A.; Malozovskaya, M.S.; Komendo, I.Y.; Sokolov, P.S.; Bondarau, A.G. Effect of phosphorus-containing dispersant on the microstructure and optical properties of scintillation ceramic (Gd,Y)3(Al,Ga)5O12:Ce with garnet structure. J. Surf. Investig. X-ray 2024, 18, 983–991. [Google Scholar] [CrossRef]
- Shilpa, C.J.; Basavaraj, R.B.; Darshan, G.P.; Premkumar, H.B.; Sharma, S.C.; Nagabhushana, H. New insights into the rapid deposition and visualization of latent fingerprints: Cyan light emitting GdAlO3:Ce3+ nano fluorescent probe. J. Photochem. Photobiol. A 2019, 376, 288–304. [Google Scholar] [CrossRef]
- Siddique, M.N.; Ahmed, A.; Riyajuddin, S.K.; Faizan, M.; Tripathi, P. Exploring the Ce3+ ions doping effect on optical and magnetic properties of NiO nanostructures. J. Magn. Magn. Mater. 2019, 12, 166323. [Google Scholar]
- Lila, D.L.; Jethva, H.O.; Modi, K.B.; Joshi, H.H. Co-existence of disordered fluorite and ordered pyrochlore phases in high energy mechanically milled Gd2Zr2O7 nanoparticulates. Ceram. Int. 2024, 50, 22989–23011. [Google Scholar] [CrossRef]
- Solodov, A.N.; Zimin, K.; Gataullina, R.M.; Zagidullin, A.A.; Leontyev, A.V.; Shmelev, A.G.; Nurtdinova, L.A.; Nikiforov, V.G.; Khasanov, O.K.; Amirova, L.M. Fluorescent polymer composites based on core-shell NaYF4:Yb/Er@NaGdF4:Ce/Tb structures for temperature monitoring and anti-counterfeiting protection. Opt. Mater. 2025, 159, 116511. [Google Scholar] [CrossRef]
- Feng, J.; Gao, Y.; Ren, H.B. Red-shift of the photoluminescent emission and enhancement of the internal quantum efficiency by co-doping Gd3+ in Tb3Al5O12: Ce3+ phosphors for warm WLEDs. J. Solid State Chem. 2025, 341, 125042. [Google Scholar] [CrossRef]
- Ma, Y.L.; Yang, Z.Z.; Zhao, Y.M.; Qi, X.Y.; Lin, S.S.; Wu, L.; Zeng, L.W.; Lu, L.L.; Wang, Z.C.; Chen, X.Z. New phase-construction phosphors ceramics for warm-white solid-state lighting: Orange-yellow-emitting (Lu,Gd)3(Sc,Al)5O12:Ce3+. Ceram. Int. 2024, 50, 49643–49651. [Google Scholar] [CrossRef]
- Ge, X.Y.; Zeng, Q.F.; Li, W.P.; Luo, L.H.; Du, P. Tailoring of spectral behaviors in Ce3+ activated Ba2Gd8(SiO4)6O2 cyan emitting phosphors via site substitution engineering for plant growth and full-spectrum white light-emitting diodes. Inorg. Chem. 2024, 63, 23837–23848. [Google Scholar] [CrossRef]
- Sun, Z.G.; Chen, Z.Y.; Wang, M.Y.; Lu, B. Production and optical properties of Ce3+-activated and Lu3+-stabilized transparent gadolinium aluminate garnet ceramics. J. Am. Ceram. Soc. 2020, 103, 809–818. [Google Scholar] [CrossRef]
- Inkrataite, G.; Zabiliute-Karaliune, A.; Aglinskaite, J.; Vitta, P.; Kristinaityte, K.; Marsalka, A.; Skaudzius, R. Study of YAG:Ce and polymer composite properties for application in LED devices. ChemPlusChem 2020, 85, 1504–1510. [Google Scholar] [CrossRef]
- Sefiane, N.; Hamroun, M.S.E.; Bélaid, Z.H.; Harek, Y.; Touahra, F.; Chebout, R.; Bachari, K. Effect of Gd3+ ion substitution on the structural and luminescence properties of Ce3+ doped YAG phosphors. J. Electron. Mater. 2024, 53, 1–8. [Google Scholar] [CrossRef]
- Li, Y.T.; Li, Y.J.; Li, C.; Zhang, X.J.; Zeng, F.; Lin, H.L.; Sun, Z.M.; Mahadevan, C. Structural, mechanical, thermal and optical properties of NaCl:Ce3+ single crystals grown in large size by the czochralski method. J. Alloys Compd. 2020, 849, 156592. [Google Scholar] [CrossRef]
- Sun, B.; Jiang, B.; Fan, J. Mn ions-activated Gd3(Al,Ga)5O12 garnet solid-solution ceramics: Cation substitution for dual wavelength red-emission. J. Am. Ceram. Soc. 2023, 1, 513–526. [Google Scholar] [CrossRef]
- Yildirim, B.; Dalmis, R.; Ertekin, K.; Birlik, I.; Azem, F.A. Enhancing optical properties of Lu3Al5O12:Ce3+ by cost-effective silica-based photonic crystals. J. Mater. Sci. Mater. Electron. 2020, 31, 10267–10278. [Google Scholar] [CrossRef]
- Li, Y.Q.; With, G.D.; Hintzen, H.T. Luminescence properties of Ce3+ activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials. J. Lumin. 2006, 116, 107–116. [Google Scholar] [CrossRef]
- Li, J.L.; Wang, C.C.; Shi, J.P.; Yu, P.H.; Zhang, Z.F. Porous GdAlO3: Cr3+, Sm3+ drug carrier for real-time long afterglow and magnetic resonance dual-mode imaging. J. Lumin. 2018, 199, 363–371. [Google Scholar] [CrossRef]
- Ji, Y.M.; Jiang, D.Y.; Wu, Z.H.; Feng, T.; Shi, J.L. Combustion synthesis and photoluminescence of Ce3+ activated MHfO3 (M = Ba, Sr, or Ca). Mater. Res. Bull. 2005, 40, 1521–1526. [Google Scholar] [CrossRef]
- Baranov, V.; Davydov, Y.I.; Mkrtchian, M.; Vasilyev, I.I. Optical properties of YAG:Ce and GGG:Ce scintillation crystals irradiated with a high fluence proton beam. Phys. Part. Nucl. Lett. 2020, 17, 878–881. [Google Scholar] [CrossRef]
- Jisha, P.K.; Prashantha, S.C.; Nagabhushana, H. Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. J. Sci. Adv. Mater. Dev. 2017, 2, 437–444. [Google Scholar] [CrossRef]
Temperature/°C | FWHM | Peak Intensity |
---|---|---|
1100 | 0.21616 | 190 |
1200 | 0.20598 | 234 |
1300 | 0.19570 | 240 |
1400 | 0.20014 | 229 |
Temperature/°C | Grain Size/nm | Lattice Parameters/Å | Unit Cell Volume/Å3 | ||
---|---|---|---|---|---|
a | b | c | |||
1100 | 116.4 | 5.2534 | 5.3007 | 7.4498 | 207.4523 |
1200 | 138.8 | 5.2574 | 5.3015 | 7.4441 | 207.4827 |
1300 | 143.3 | 5.2496 | 5.3075 | 7.4563 | 207.7493 |
1400 | 489.2 | 5.2450 | 5.3062 | 7.4762 | 208.0702 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, P.; Wang, G.; Li, G.; Li, S.; Liu, Y.; Zhu, P. Study on the Preparation and Optical Properties of Ce3+ Doped GdAlO3 Nanoparticles by Co-Precipitation Method. Crystals 2025, 15, 126. https://doi.org/10.3390/cryst15020126
Qi P, Wang G, Li G, Li S, Liu Y, Zhu P. Study on the Preparation and Optical Properties of Ce3+ Doped GdAlO3 Nanoparticles by Co-Precipitation Method. Crystals. 2025; 15(2):126. https://doi.org/10.3390/cryst15020126
Chicago/Turabian StyleQi, Pengyuan, Gang Wang, Gang Li, Shuai Li, Yang Liu, and Pengfu Zhu. 2025. "Study on the Preparation and Optical Properties of Ce3+ Doped GdAlO3 Nanoparticles by Co-Precipitation Method" Crystals 15, no. 2: 126. https://doi.org/10.3390/cryst15020126
APA StyleQi, P., Wang, G., Li, G., Li, S., Liu, Y., & Zhu, P. (2025). Study on the Preparation and Optical Properties of Ce3+ Doped GdAlO3 Nanoparticles by Co-Precipitation Method. Crystals, 15(2), 126. https://doi.org/10.3390/cryst15020126