Enhancing Perovskite Solar Cell Stability by TCO Layer Presence Beneath MACl-Doped Perovskites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents Information
2.2. Preparation of Solution
2.3. Device Fabrication
2.4. Measurement Condition
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X.; Jiang, J.Y. Solar Cell Efficiency Tables (Version 65). In Progress in Photovoltaics: Research and Applications; Wiley: Hoboken, NJ, USA, 2024. [Google Scholar]
- Li, D.; Jiang, X.; Müller-Buschbaum, P.; Ma, R.; Li, G. Enhancing Perovskite/Silicon Tandem Solar Cells via Nuclei Engineering. Green Carbon 2024, in press. [Google Scholar] [CrossRef]
- Correa-Baena, J.-P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef]
- Zhu, H.; Xi, Z.; Cui, Y.; Li, M.; Yuan, Y.; Zhang, J. Conformal SnO2 and NiOx charge transport layers for pragmatic air-processed perovskite solar cells. Appl. Phys. Lett. 2024, 125, 163904. [Google Scholar] [CrossRef]
- Saliba, M.; Correa-Baena, J.P.; Grätzel, M.; Hagfeldt, A.; Abate, A. Perovskite solar cells: From the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 2018, 57, 2554–2569. [Google Scholar] [CrossRef]
- Mazumdar, S.; Zhao, Y.; Zhang, X. Stability of perovskite solar cells: Degradation mechanisms and remedies. Front. Electron. 2021, 2, 712785. [Google Scholar] [CrossRef]
- Snaith, H.J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 2018, 17, 372–376. [Google Scholar] [CrossRef]
- Park, N.-G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 2016, 1, 16152. [Google Scholar] [CrossRef]
- Deng, W.; Wei, J.; Ma, Z.; Feng, W. Research Progress on Stability of FAPbI3 Perovskite Solar Cells. Cryst. Res. Technol. 2025, 60, 2400228. [Google Scholar] [CrossRef]
- Lee, S.H.; Lim, S.B.; Kim, J.Y.; Lee, S.; Oh, S.Y.; Kim, G.M. An Alternative to Chlorobenzene as a Hole Transport Materials Solvent for High-Performance Perovskite Solar Cells. Crystals 2023, 13, 1667. [Google Scholar] [CrossRef]
- Wei, J.; Liu, F. Advances of Perovskite Solar Cells. Crystals 2024, 14, 862. [Google Scholar] [CrossRef]
- Xing, J.; Sun, Y.; He, S.; Huang, X.; Li, Y.; Huang, Z.; Wang, B.; Zhou, R.; Li, Y.; Zhang, J.; et al. Triple-Cation Mixed-Halide Perovskite Single-Crystal Thin-Film for High-Performance Photodetector via Adjusting Lattice Strain and Mitigating Surface Defects. Adv. Funct. Mater. 2024, 34, 2411619. [Google Scholar] [CrossRef]
- Kim, M.; Kim, G.-H.; Lee, T.K.; Choi, I.W.; Choi, H.W.; Jo, Y.; Yoon, Y.J.; Kim, J.W.; Lee, J.; Huh, D. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 2019, 3, 2179–2192. [Google Scholar] [CrossRef]
- Guaita, M.G.D.; Szostak, R.; da Silva, F.M.C.; de Morais, A.; Moral, R.F.; Kodalle, T.; Teixeira, V.C.; Sutter-Fella, C.M.; Tolentino, H.C.N.; Nogueira, A.F. Influence of Methylammonium Chloride on Wide-Bandgap Halide Perovskites Films for Solar Cells. Adv. Funct. Mater. 2024, 34, 2307104. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Xu, F.; Wang, Y.; Li, G.; Yang, Y.; Zhao, Y. CH3NH3Cl Assisted Solvent Engineering for Highly Crystallized and Large Grain Size Mixed-Composition (FAPbI3)0.85(MAPbBr3)0.15 Perovskites. Crystals 2017, 7, 272. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Xi, X.; Yang, G.; Hu, L.; Zhu, B.; He, Y.; Liu, Y.; Qian, H.; Zhang, S.; et al. Annealing Engineering in the Growth of Perovskite Grains. Crystals 2022, 12, 894. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, Y.; Liang, J.; Tian, C.; Sun, A.; Tang, C.; Liu, Y.; Zhang, S.; Wang, C.; Song, S.; et al. Synergistic Effect of Alkylammonium Chlorides to Trigger an Ultrafast Nucleation for Antisolvent-Free Perovskite Solar Cells Processed from 2-Methoxyethanol. Adv. Energy Mater. 2024, 14, 2304302. [Google Scholar] [CrossRef]
- Wang, C.; He, B.; Fu, M.; Su, Z.; Zhang, L.; Zhang, J.; Mei, B.; Gao, X. Influence of MACl on the Crystallization Kinetics of Perovskite via a Two-Step Method. Crystals 2024, 14, 399. [Google Scholar] [CrossRef]
- Ding, B.; Ding, Y.; Peng, J.; Romano-deGea, J.; Frederiksen, L.E.K.; Kanda, H.; Syzgantseva, O.A.; Syzgantseva, M.A.; Audinot, J.-N.; Bour, J.; et al. Dopant-additive synergism enhances perovskite solar modules. Nature 2024, 628, 299–305. [Google Scholar] [CrossRef]
- Turren-Cruz, S.-H.; Hagfeldt, A.; Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 2018, 362, 449–453. [Google Scholar] [CrossRef]
- Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J.M.; Alsari, M.; Booker, E.P.; Hutter, E.M.; Pearson, A.J. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555, 497–501. [Google Scholar] [CrossRef]
- Chen, J.; Park, N.-G. Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Lett. 2020, 5, 2742–2786. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.-W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef]
- Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Chen, W.; Baran, D.; Stubhan, T.; Luechinger, N.A.; Hartmeier, B.; Richter, M.; Min, J.; Chen, S.; Quiroz, C.O.R. Overcoming the interface losses in planar heterojunction perovskite-based solar cells. Adv. Mater. 2016, 28, 5112–5120. [Google Scholar] [CrossRef]
- Saliba, M.; Correa-Baena, J.-P.; Wolff, C.M.; Stolterfoht, M.; Phung, N.; Albrecht, S.; Neher, D.; Abate, A. How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures. Chem. Mater. 2018, 30, 4193–4201. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A. Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy Environ. Sci. 2016, 9, 1989. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Deng, L.; Li, X.; Zhang, X.; Wang, H.; Li, C.; Shi, Z.; Hu, T.; Liu, K.; et al. Interfacial Bridging Enables High Performance Perovskite Solar Cells with Fill Factor Over 85%. Adv. Energy Mater. 2024, 14, 2402066. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S.M.; Correa-Baena, J.-P.; Tress, W.R.; Abate, A.; Hagfeldt, A. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef]
- Ali, F.; Roldán-Carmona, C.; Sohail, M.; Nazeeruddin, M.K. Applications of Self-Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability. Adv. Energy Mater. 2020, 10, 2002989. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, C.; Li, D.; Guo, H.; Liao, F.; Cao, W.; Niu, X.; Zhao, Y. Effects of substrate temperature on the crystallization process and properties of mixed-ion perovskite layers. J. Mater. Chem. A 2019, 7, 2804–2811. [Google Scholar] [CrossRef]
- Wang, C.; Dong, X.; Chen, F.; Liu, G.; Zheng, H. Recent progress of two-dimensional Ruddlesden-Popper perovskites in solar cells. Mater. Chem. Front. 2023, 7, 5786–5805. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, J.; Huang, P.; Yin, Q.; Zou, S.; Wang, L.; Zhang, Z.; Luo, H.; Liu, F.; Qiu, J.; et al. Reexamining the Post-Treatment Effects on Perovskite Solar Cells: Passivation and Chloride Redistribution. Small Methods 2023, 7, 2201467. [Google Scholar] [CrossRef]
- Fu, L.; Li, H.; Wang, L.; Yin, R.; Li, B.; Yin, L. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 2020, 13, 4017–4056. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, D.; Liu, J.; Cai, H. Review of Interface Passivation of Perovskite Layer. Nanomaterials 2021, 11, 775. [Google Scholar] [CrossRef]
- Zhu, X.; Li, M.; Mo, K.; Yang, M.; Li, S.; Yang, Y.; Wang, H.; Li, R.; Liu, Y.; Lin, Q.; et al. A Surface-Reconstructed Bilayer Heterojunction Enables Efficient and Stable Inverted Perovskite Solar Cells. Adv. Mater. 2024, 36, 2409340. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Hou, Y.; Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Song, K.; Liu, J.; Troughton, J.; Gasparini, N. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 2020, 5, 131–140. [Google Scholar] [CrossRef]
- Chen, H.; Ye, F.; Tang, W.; He, J.; Yin, M.; Wang, Y.; Xie, F.; Bi, E.; Yang, X.; Grätzel, M. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 2017, 550, 92–95. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, C.; Yang, Y.; Harvey, S.P.; Kim, D.H.; Christians, J.A.; Yang, M.; Schulz, P.; Nanayakkara, S.U.; Jiang, C.-S. Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 2017, 10, 1234–1242. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, Y.; Zhang, G.; Wang, P.; Sui, X.; Yuan, H.; Shi, Y.; Zhang, G.; Ding, G.; Li, Y.; et al. In Situ Dual-Interface Passivation Strategy Enables The Efficiency of Formamidinium Perovskite Solar Cells Over 25%. Adv. Mater. 2024, 36, 2307855. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.H.; Di Giacomo, F.; Matteocci, F.; Castriotta, L.A.; Di Carlo, A. Holistic Approach toward a Damage-Less Sputtered Indium Tin Oxide Barrier Layer for High-Stability Inverted Perovskite Solar Cells and Modules. ACS Appl. Mater. Interfaces 2022, 14, 51438–51448. [Google Scholar] [CrossRef] [PubMed]
- Matteocci, F.; Busby, Y.; Pireaux, J.-J.; Divitini, G.; Cacovich, S.; Ducati, C.; Di Carlo, A. Interface and Composition Analysis on Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 26176–26183. [Google Scholar] [CrossRef] [PubMed]
- Stone, K.H.; Gold-Parker, A.; Pool, V.L.; Unger, E.L.; Bowring, A.R.; McGehee, M.D.; Toney, M.F.; Tassone, C.J. Transformation from crystalline precursor to perovskite in PbCl2-derived MAPbI3. Nat. Commun. 2018, 9, 3458. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC (NH2) 2PbI3-based perovskite solar cells. Nat. Energy 2016, 2, 16177. [Google Scholar] [CrossRef]
- Hakeem, S.; Ali, S.; Liaqat, M.A.; Jamshed, A.; Basit, M.; Masood, M.T.; Javed, S. Effect of Annealing Temperature on the Morphology, Structure and Optical Properties of Spin-Coated SnO2 Films for Solar Cell Application. Mater. Proc. 2024, 17, 28. [Google Scholar] [CrossRef]
- Kumar, A.; Mohammed, M.K.A.; Telba, A.A.; Mahrous Awwad, E.; Ulloa, N.; Vaca Barahona, B.; Kaur, H.; Singh, P. Calotropis-mediated biosynthesis of TiO2@SnO2/Ag nanocomposites for efficient perovskite photovoltaics. Opt. Mater. 2024, 151, 115402. [Google Scholar] [CrossRef]
- Arjun, V.; Muthukumaran, K.P.; Nithya, A.; Yoshimura, M.; Karuppuchamy, S. Nickel oxide incorporated CH3NH3PbI3 for stable and efficient planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 2024, 271, 112857. [Google Scholar] [CrossRef]
- Deng, L.; Yang, H.; Liu, Z.; Yang, X.; Huang, Z.; Yu, H.; Wang, K.; Li, J. Effective Phase Control for High-Performance Red-Light-Emitting Quasi-2D Perovskite Solar Cells via MACl Additive. ACS Appl. Energy Mater. 2021, 4, 2856–2863. [Google Scholar] [CrossRef]
- Zhu, X.; Du, M.; Feng, J.; Wang, H.; Xu, Z.; Wang, L.; Zuo, S.; Wang, C.; Wang, Z.; Zhang, C.; et al. High-Efficiency Perovskite Solar Cells with Imidazolium-Based Ionic Liquid for Surface Passivation and Charge Transport. Angew. Chem. Int. Ed. 2021, 60, 4238–4244. [Google Scholar] [CrossRef]
KWHM (nm) | |
---|---|
MACl_X_Glass | 51 nm |
MACl_X_ITO | 54 nm |
MACl_O_Glass | 56 nm |
MACl_O_ITO | 52 nm |
Day | Glass | ITO |
---|---|---|
Day 1 | 38.55 nm | 39.59 nm |
Day 8 | 41.99 nm | 33.35 nm |
Condition | Type | PCE (%) | Voc (V) | Jsc (mA/cm2) | FF (%) | HI |
---|---|---|---|---|---|---|
MACl_X | Forward | 17.36 | 1.12 | 23.72 | 0.65 | 0.04 |
Reverse | 17.99 | 1.13 | 23.56 | 0.68 | ||
MACl_O | Forward | 20.83 | 1.14 | 24.28 | 0.75 | 0.03 |
Reverse | 21.51 | 1.15 | 24.31 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Kim, J.; Kim, G.M. Enhancing Perovskite Solar Cell Stability by TCO Layer Presence Beneath MACl-Doped Perovskites. Crystals 2025, 15, 152. https://doi.org/10.3390/cryst15020152
Song M, Kim J, Kim GM. Enhancing Perovskite Solar Cell Stability by TCO Layer Presence Beneath MACl-Doped Perovskites. Crystals. 2025; 15(2):152. https://doi.org/10.3390/cryst15020152
Chicago/Turabian StyleSong, Minkyu, Jinyoung Kim, and Gyu Min Kim. 2025. "Enhancing Perovskite Solar Cell Stability by TCO Layer Presence Beneath MACl-Doped Perovskites" Crystals 15, no. 2: 152. https://doi.org/10.3390/cryst15020152
APA StyleSong, M., Kim, J., & Kim, G. M. (2025). Enhancing Perovskite Solar Cell Stability by TCO Layer Presence Beneath MACl-Doped Perovskites. Crystals, 15(2), 152. https://doi.org/10.3390/cryst15020152