Dynamic Colour Changes in Thermochromic Liquid Crystal Inks: Compatibility with Bacterial Nanocellulose for Sustainable Packaging Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Printing Inks and Printing Substrates
2.2. BNC Preparation
2.3. Printing Process
2.4. Characterization of the Printing Substrates
2.5. Temperature-Dependent Optical Properties of Printed TLC Inks
3. Results
3.1. Surface Morphology
3.2. Determination of Fillers Content in UT and BNC Substrates
3.3. Temperature-Dependent Colorimetric Properties of Printed TLC Inks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taugerbeck, A.; Booth, C.J. Design and Synthesis of Chiral Nematic Liquid Crystals. In Handbook of Liquid Crystals; Wiley: Hoboken, NJ, USA, 2014; pp. 1–63. [Google Scholar] [CrossRef]
- LCR Hallcrest. Hallcrest Handbook of Thermochromic Liquid Crystal Technology.pdf. Available online: https://spotsee.io/wp-content/uploads/2021/05/RT006-Rev01-USA-Thermochromic-Handbook.pdf?srsltid=AfmBOoqBS9yrfgobRIj48S7Q0KwbZ3_zI2FCF3ukTqJNEUCaJuqjSR95 (accessed on 1 October 2024).
- Strižić Jakovljević, M.; Lozo, B.; Klanjšek Gunde, M. The properties of printing substrates required for thermochromic liquid-crystal printing inks. J. Print Media Technol. Res. 2018, 7, 165–170. [Google Scholar] [CrossRef]
- Seeboth, A.; Lötzsch, D.; Ruhmann, R.; Muehling, O. Thermochromic polymers—Function by design. Chem. Rev. 2014, 114, 3037–3068. [Google Scholar] [CrossRef] [PubMed]
- Christie, R.M.; Robertson, S.; Taylor, S. Design Concepts for a Temperature-sensitive Environment Using Thermochromic Colour Change. Colour Des. Creat. 2007, 1, 1–11. [Google Scholar]
- White, M.A.; LeBlanc, M. Thermochromism in Commercial Products. J. Chem. Educ. 1999, 76, 1201–1205. [Google Scholar] [CrossRef]
- Kerry, J.; Butler, P. Smart Packaging Technologies for Fast Moving Consumer Goods; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Zhang, W.; Fei, L.; Zhang, J.; Chen, K.; Yin, Y.; Wang, C. Durable and tunable temperature responsive silk fabricated with reactive thermochromic pigments. Prog. Org. Coat. 2020, 147, 105697. [Google Scholar] [CrossRef]
- Štaffová, M.; Kučera, F.; Tocháček, J.; Dzik, P.; Ondreáš, F.; Jančář, J. Insight into color change of reversible thermochromic systems and their incorporation into textile coating. J. Appl. Polym. Sci. 2021, 138, 49724. [Google Scholar] [CrossRef]
- Liu, B.; Rasines Mazo, A.; Gurr, P.A.; Qiao, G.G. Reversible Nontoxic Thermochromic Microcapsules. ACS Appl. Mater. Interfaces 2020, 12, 9782–9789. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; He, Y.; Han, N.; Zhang, X.; Li, W. Synthesis and characterization of hydrophobic reversible thermochromic MicroPCMs with amino resins shell for thermal energy storage. Energy Build. 2021, 230, 110528. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Han, N.; Wang, J.; Zhang, X. Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Appl. Energy 2019, 247, 615–629. [Google Scholar] [CrossRef]
- Breheny, C.; Donlon, K.; Harrington, A.; Colbert, D.M.; Bezerra, G.S.N.; Geever, L.M. Thermochromic Polymers in Food Packaging: A Comprehensive Systematic Review and Patent Landscape Analysis. Coatings 2024, 14, 1252. [Google Scholar] [CrossRef]
- Sage, I. Thermochromic liquid crystals. Liq. Cryst. 2011, 38, 1551–1561. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 2012, 12, 1387–1412. [Google Scholar] [CrossRef]
- Kitzerow, H.-S.; Bahr, C. Chirality in Liquid Crystals; Springer: New York, NY, USA, 2001. [Google Scholar]
- Yoon, J.; Lee, W.; Thomas, E.L. Thermochromic block copolymer photonic gel. Macromolecules 2008, 41, 4582–4584. [Google Scholar] [CrossRef]
- Jakovljević, M.S.; Lozo, B.; Gunde, M.K. Identifying a unique communication mechanism of thermochromic liquid crystal printing ink. Crystals 2021, 11, 876. [Google Scholar] [CrossRef]
- Dermol, Š.; Borin, B.; Gregor-Svetec, D.; Slemenik Perše, L.; Lavrič, G. The Development of a Bacterial Nanocellulose/Cationic Starch Hydrogel for the Production of Sustainable 3D-Printed Packaging Foils. Polymers 2024, 16, 1527. [Google Scholar] [CrossRef] [PubMed]
- Lavrič, G.; Medvešček, D.; Skočaj, M. Papermaking properties of bacterial nanocellulose produced from mother of vinegar, a waste product after classical vinegar production. Tappi J. 2020, 19, 197–203. [Google Scholar] [CrossRef]
- Lavrič, G.; Oberlintner, A.; Filipova, I.; Novak, U.; Likozar, B.; Vrabič-Brodnjak, U. Functional Nanocellulose, Alginate and Chitosan Nanocomposites Designed as Active Film Packaging Materials. Polymers 2021, 13, 2523. [Google Scholar] [CrossRef] [PubMed]
- Mahović Poljaček, S.; Tomašegović, T.; Strižić Jakovljević, M.; Jamnicki Hanzer, S.; Murković Steinberg, I.; Žuvić, I.; Leskovac, M.; Lavrič, G.; Kavčič, U.; Karlovits, I. Starch-Based Functional Films Enhanced with Bacterial Nanocellulose for Smart Packaging: Physicochemical Properties, pH Sensitivity and Colorimetric Response. Polymers 2024, 16, 2259. [Google Scholar] [CrossRef] [PubMed]
- Pantić, M.; Nowak, M.; Lavrič, G.; Knez, Ž.; Novak, Z.; Zizovic, I. Enhancing the properties and morphology of starch aerogels with nanocellulose. Food Hydrocoll. 2024, 156, 110345. [Google Scholar] [CrossRef]
- Sefar AG. SEFAR® PET 1500. Available online: https://www.sefar.com/data/docs/zh/10855/PS-PDF-SEFAR-PET1500-AL-EN.pdf?v=1.8 (accessed on 11 December 2024.).
- ISO 25178:2016; Geometrical Product Specifications (GPS)—Surface Texture: Areal. ISO: Geneva, Switzerland, 2016.
- ISO 534:2011; Paper and Board—Determination of Thickness, Density and Specific Volume. ISO: Geneva, Switzerland, 2011.
- TAPPI-T412; Om-94 Moisture in Pulp, Paper and Paperboard. TAPPI: Peachtree Corners, GA, USA, 2016.
- TAPPI T 211; Om-02 Ash in Wood, Pulp, Paper, and Paperboard: Combustion at 525 °C. TAPPI: Peachtree Corners, GA, USA, 2007.
- TAPPI T 413 93; Ash in Wood, Pulp, Paper and Paperboard: Combustion at 900 °C. TAPPI: Peachtree Corners, GA, USA, 2007.
TLC Ink | TA (°C) | Temperature Activation Region (°C) |
---|---|---|
TLC 14 | 14 | 14–19 |
TLC 25 | 25 | 15–30 |
Sample | Sa (µm) | Sz (µm) | Sp (µm) | Sv (µm) |
---|---|---|---|---|
UT, unprinted | 2 | 47 | 32 | 15 |
BNC, unprinted | 20 | 112 | 47 | 65 |
TLC 14 + UT | 5 | 31 | 15 | 16 |
TLC 14 + BNC | 18 | 119 | 62 | 57 |
TLC 25 + UT | 3 | 36 | 25 | 11 |
TLC 25 + BNC | 13 | 97 | 47 | 50 |
Sample | Absolute Moisture (%) | Ash Content/525 °C (%) | Ash Content/900 °C (%) |
---|---|---|---|
UT | 3.93 | 5 | 4.57 |
BNC | 3.93 | 6.22 | 3.74 |
TLC Prints | T(L*max) (°C) | λ (nm) | ∆L*max |
---|---|---|---|
TLC 14 + UT | 17 | 556 | 5.09 |
TLC 14 + BNC | 16 | 566 | 5.6 |
TLC 25 + UT | 28 | 555 | 5.94 |
TLC 25 + BNC | 28.5 | 554 | 5.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strižić Jakovljević, M.; Klanjšek Gunde, M.; Cigula, T.; Lavrič, G. Dynamic Colour Changes in Thermochromic Liquid Crystal Inks: Compatibility with Bacterial Nanocellulose for Sustainable Packaging Solutions. Crystals 2025, 15, 283. https://doi.org/10.3390/cryst15030283
Strižić Jakovljević M, Klanjšek Gunde M, Cigula T, Lavrič G. Dynamic Colour Changes in Thermochromic Liquid Crystal Inks: Compatibility with Bacterial Nanocellulose for Sustainable Packaging Solutions. Crystals. 2025; 15(3):283. https://doi.org/10.3390/cryst15030283
Chicago/Turabian StyleStrižić Jakovljević, Maja, Marta Klanjšek Gunde, Tomislav Cigula, and Gregor Lavrič. 2025. "Dynamic Colour Changes in Thermochromic Liquid Crystal Inks: Compatibility with Bacterial Nanocellulose for Sustainable Packaging Solutions" Crystals 15, no. 3: 283. https://doi.org/10.3390/cryst15030283
APA StyleStrižić Jakovljević, M., Klanjšek Gunde, M., Cigula, T., & Lavrič, G. (2025). Dynamic Colour Changes in Thermochromic Liquid Crystal Inks: Compatibility with Bacterial Nanocellulose for Sustainable Packaging Solutions. Crystals, 15(3), 283. https://doi.org/10.3390/cryst15030283