A Data-Driven Framework for Accelerated Modeling of Stacking Fault Energy from Density of States Spectra
Abstract
:1. Introduction
2. Methodology
2.1. Data Preprocessing and Feature Extraction
2.2. Dimensionality Reduction Techniques
3. Results and Discussion
3.1. Role of Planar Faults on DOS
3.2. Prediction of SFE Using DOS Spectra
3.2.1. Data Collection and Preparation
3.2.2. Regression Model Optimization and Feature Selection
3.2.3. Performance Metrics for Model Evaluation
3.2.4. SFE Prediction Using Random Forest
3.3. Transitioning from Single Elements to Binary Alloys: SFE Mapping
3.3.1. SFE Prediction in Cu-Zn Binary Alloys
3.3.2. Designing Binary Alloys with Tailored Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SFE | Stacking Fault Energy |
DOS | Density of States |
PCA | Principal Component Analysis |
UMAP | Uniform Manifold Approximation and Projection |
ML | Machine Learning |
APB | Anti-Phase Boundary |
CSF | Complex Stacking Fault |
SISF | Superlattice Intrinsic Stacking Fault |
ISF | Intrinsic Stacking Fault |
USF | Unstable Stacking Fault |
PDOS | Partial Density of States |
EF | Fermi Energy |
MAE | Mean Absolute Error |
R2 | Coefficient of Determination |
RF | Random Forest |
DFT | Density Functional Theory |
GGA | Generalized Gradient Approximation |
PAW | Projector Augmented Wave |
L10 | Tetragonal Intermetallic Structure |
L12 | Cubic Ordered Intermetallic Structure |
References
- Perez, N. Crystal Defects. In Materials Science: Theory and Engineering; Perez, N., Ed.; Springer Nature: Switzerland, Cham, 2024; pp. 207–263. [Google Scholar] [CrossRef]
- Li, P.; Li, S.X.; Wang, Z.G.; Zhang, Z.F. Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals. Prog. Mater. Sci. 2011, 56, 328–377. [Google Scholar] [CrossRef]
- Schönecker, S.; Li, W.; Vitos, L.; Li, X. Effect of strain on generalized stacking fault energies and plastic deformation modes in fcc-hcp polymorphic high-entropy alloys: A first-principles investigation. Phys. Rev. Mater. 2021, 5, 075004. [Google Scholar] [CrossRef]
- Vítek, V. Multilayer stacking faults and twins on {211} planes in B.C.C. metals. Scr. Metall. 1970, 4, 725–732. [Google Scholar] [CrossRef]
- Ericsson, T. The temperature and concentration dependence of the stacking fault energy in the Co-Ni system. Acta Metall. 1966, 14, 853–865. [Google Scholar] [CrossRef]
- Andric, P.; Yin, B.; Curtin, W.A. Stress-dependence of generalized stacking fault energies. J. Mech. Phys. Solids 2019, 122, 262–279. [Google Scholar] [CrossRef]
- Shang, S.L.; Zacherl, C.L.; Fang, H.Z.; Wang, Y.; Du, Y.; Liu, Z.K. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. J. Phys. Condens. Matter 2012, 24, 505403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dou, Y.; Liu, G.; Guo, Z. First-principles study of stacking fault energies in Mg-based binary alloys. Comput. Mater. Sci. 2013, 79, 564–569. [Google Scholar] [CrossRef]
- Li, R.; Lu, S.; Kim, D.; Schönecker, S.; Zhao, J.; Kwon, S.K.; Vitos, L. Stacking fault energy of face-centered cubic metals: Thermodynamic and ab initio approaches. J. Phys. Condens. Matter 2016, 28, 395001. [Google Scholar] [CrossRef]
- Arora, G.; Kamrava, S.; Tahmasebi, P.; Aidhy, D.S. Charge-density based convolutional neural networks for stacking fault energy prediction in concentrated alloys. Materialia 2022, 26, 101620. [Google Scholar] [CrossRef]
- Li, X.; Chen, K.; Wang, C.; Zhuo, T.; Li, H.; Wu, Y.; Lei, X.; Li, M.; Chen, B.; Chai, B. Correlation analysis of materials properties by machine learning: Illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloys. J. Phys. Condens. Matter 2021, 33, 295702. [Google Scholar]
- Chaudhary, N.; Abu-Odeh, A.; Karaman, I.; Arróyave, R. A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels. J. Mater. Sci. 2017, 52, 11048–11076. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, K.; Thé, J.; Yu, H. Accurate prediction of band gap of materials using stacking machine learning model. Comput. Mater. Sci. 2022, 201, 110899. [Google Scholar] [CrossRef]
- Wu, T.; Gao, R.; Tang, X.; Chu, Z.; Ye, B.; Yuan, Z. Deformation mechanism of L12-type multicomponent intermetallics: The generalized stacking fault energy and chemical bonds. Mater. Des. 2023, 228, 111824. [Google Scholar]
- Ikeda, Y.; Körmann, F. Impact of N on the Stacking Fault Energy and Phase Stability of FCC CrMnFeCoNi: An Ab Initio Study. J. Phase Equilib. Diffus. 2021, 42, 551–560. [Google Scholar] [CrossRef]
- Linda, A.; Akhtar Md, F.; Pathak, S.; Bhowmick, S. Accelerating the prediction of stacking fault energy by combining ab initio calculations and machine learning. Phys. Rev. B 2024, 109, 214102. [Google Scholar] [CrossRef]
- Stange, H.; Brunken, S.; Hempel, H.; Rodriguez-Alvarez, H.; Schäfer, N.; Greiner, D.; Scheu, A.; Lauche, J.; Kaufmann, C.A.; Unold, T.; et al. Effect of Na presence during CuInSe2 growth on stacking fault annihilation and electronic properties. Appl. Phys. Lett. 2015, 107, 152103. [Google Scholar] [CrossRef]
- Mapping the Relationship Among Composition, Stacking Fault Energy and Ductility in Nb Alloys: A First-Principles Study—ScienceDirect. Available online: https://www-sciencedirect-com.gate.lib.buffalo.edu/science/article/pii/S1359645417309722 (accessed on 22 March 2025).
- Liu, J.; Zou, H.; Deng, F.; Liu, Y.; Li, W.; Xu, J.; Liu, S.; Wu, Q.; Zhang, X.; Weng, F.; et al. The structural stability, mechanical properties and stacking fault energy of Al3Zr precipitates in Al-Cu-Zr alloys: HRTEM observations and first-principles calculations. J. Alloys Compd. 2024, 42, 1764–1776. [Google Scholar]
- Harris, I.R.; Dillamore, I.L.; Smallman, R.E.; Beeston, B.E.P. The Influence of D-Band Structure on Stacking-Fault Energy. Philos. Mag. 1966, 14, 325–333. [Google Scholar] [CrossRef]
- Kumar, K.; Sankarasubramanian, R.; Waghmareb, U. Influence of dilute solute substitutions in Ni on its generalized stacking fault energies and ductility. Comput. Mater. Sci. 2018, 150, 424–431. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; An, Q. Modified Generalized-Stacking-Fault Energy Surface of II-VI Ionic Crystals from Excess Electrons and Holes. ACS Appl. Electron. Mater. 2019, 2, 56–65. [Google Scholar] [CrossRef]
- Xie, T.; Grossman, J.C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 2018, 120, 145301. [Google Scholar] [CrossRef] [PubMed]
- Park, C.W.; Wolverton, C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery. Phys. Rev. Mater. 2020, 4, 063801. [Google Scholar] [CrossRef]
- Réau, M.; Renaud, N.; Xue, L.C.; Bonvin, A.M.J.J. DeepRank-GNN: A graph neural network framework to learn patterns in protein–protein interfaces. Bioinformatics 2023, 39, btac759. [Google Scholar] [CrossRef]
- Dunn, A.; Wang, Q.; Ganose, A.; Dopp, D.; Jain, A. Benchmarking materials property prediction methods: The Matbench test set and Automatminer reference algorithm. npj Comput. Mater. 2020, 6, 138. [Google Scholar] [CrossRef]
- Shlomi, J.; Battaglia, P.; Vlimant, J.-R. Graph neural networks in particle physics. Mach. Learn. Sci. Technol. 2020, 2, 021001. [Google Scholar] [CrossRef]
- Broderick, S.R.; Rajan, K. Eigenvalue decomposition of spectral features in density of states curves. EPL 2011, 95, 57005. [Google Scholar] [CrossRef]
- Broderick, S.R.; Aourag, H.; Rajan, K. Classification of Oxide Compounds through Data-Mining Density of States Spectra. J. Am. Ceram. Soc. 2011, 94, 2974–2980. [Google Scholar] [CrossRef]
- Broderick, S.R.; Aourag, H.; Rajan, K. Data mining density of states spectra for crystal structure classification: An inverse problem approach. Stat. Anal. Data Min. ASA Data Sci. J. 2009, 1, 353–360. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Kývala, L.; Montero de Hijes, P.; Dellago, C. Unsupervised identification of crystal defects from atomistic potential descriptors. npj Comput. Mater. 2025, 11, 50. [Google Scholar] [CrossRef]
- Murata, T.; Saito, N.; Koyama, E.; Phuong, T.N.T.; Misawa, R.; Yokomizo, S.; Mato, T.; Takada, Y.; Hirose, S.; Katsura, Y. Data-driven analysis and visualization of dielectric properties curated from scientific literature. Sci. Technol. Adv. Mater. Methods 2025, 2485018. [Google Scholar] [CrossRef]
- Rahimi, M.; Mehrpanah, A.; Mouchani, P.; Rahimi, E.; Salaudeen, S.A. Optimizing Methane Uptake on N/O Functionalized Graphene via DFT, Machine Learning, and Uniform Manifold Approximation and Projection (UMAP) Techniques. Ind. Eng. Chem. Res. 2024, 63, 18940–18956. [Google Scholar] [CrossRef]
- Broderick, S.R.; Nowers, J.R.; Narasimhan, B.; Rajan, K. Tracking Chemical Processing Pathways in Combinatorial Polymer Libraries via Data Mining. J. Comb. Chem. 2010, 12, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Broderick, S.R.; Suh, C.; Provine, J.; Roper, C.S.; Maboudian, R.; Howe, R.T.; Rajan, K. Application of principal component analysis to a full profile correlative analysis of FTIR spectra. Surf. Interface Anal. 2012, 44, 365–371. [Google Scholar] [CrossRef]
- Xu, P.; Ji, X.; Li, M.; Lu, W. Small data machine learning in materials science. npj Comput. Mater. 2023, 9, 42. [Google Scholar] [CrossRef]
- Kurita, T. Principal Component Analysis (PCA). In Computer Vision: A Reference Guide; Ikeuchi, K., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1013–1016. [Google Scholar] [CrossRef]
- Saidi, F.; Khetari, S.; Yahia, I.S.; Zahran, H.Y.; Hidouri, T.; Ameur, N. The use of principal component analysis (PCA) and partial least square (PLS) for designing new hard inverse perovskites materials. Comput. Condens. Matter 2022, 31, e00667. [Google Scholar] [CrossRef]
- Wu, J.; Wen, L.; Tang, B.-Y.; Peng, L.; Ding, W.-J. Generalized planner fault energies, twinning and ductility of L12 type Al3Sc and Al3Mg. Solid. State Sci. 2011, 13, 120–125. [Google Scholar] [CrossRef]
- Woodward, C.; MacLaren, J.M.; Rao, S. Electronic structure of planar faults in TiAl. J. Mater. Res. 1992, 7, 1735–1750. [Google Scholar] [CrossRef]
- Fukunaga, K.; Shouji, T.; Miura, Y. Temperature dependence of dislocation structure of L12–Al3Sc. Mater. Sci. Eng. A 1997, 239–240, 202–205. [Google Scholar] [CrossRef]
- Daffertshofer, A.; Lamoth, C.J.C.; Meijer, O.G.; Beek, P.J. PCA in studying coordination and variability: A tutorial. Clin. Biomech. 2004, 19, 415–428. [Google Scholar] [CrossRef]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C. Multi- and Megavariate Data Analysis Basic Principles and Applications; Umetrics Academy: Umeå, Sweden, 2013. [Google Scholar]
- Berthiaux, H.; Mosorov, V.; Tomczak, L.; Gatumel, C.; Demeyre, J.F. Principal component analysis for characterising homogeneity in powder mixing using image processing techniques. Chem. Eng. Process. Process Intensif. 2006, 45, 397–403. [Google Scholar] [CrossRef]
- Suh, C.; Rajagopalan, A.; Li, X.; Rajan, K. The application of Principal Component Analysis to materials science data. Data Sci. J. 2002, 1, 19–26. [Google Scholar] [CrossRef]
- Edalati, K.; Akama, D.; Nishio, A.; Lee, S.; Yonenaga, Y.; Cubero-Sesin, J.M.; Horita, Z. Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater. 2014, 69, 68–77. [Google Scholar] [CrossRef]
- Hirth, J.P.; Lothe, J.; Mura, T. Theory of Dislocations. J. Appl. Mech. 1983, 50, 476–477. [Google Scholar] [CrossRef]
- Islam, M.T.; Liu, Q.; Broderick, S. Machine Learning Accelerated Design of High-Temperature Ternary and Quaternary Nitride Superconductors. Appl. Sci. 2024, 14, 9196. [Google Scholar] [CrossRef]
- Bang, K.; Yeo, B.C.; Kim, D.; Han, S.S.; Lee, H.M. Accelerated mapping of electronic density of states patterns of metallic nanoparticles via machine-learning. Sci. Rep. 2021, 11, 11604. [Google Scholar] [CrossRef]
- Edalati, K.; Horita, Z. High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Mater. 2011, 59, 6831–6836. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, W.; Yuan, M.; Liang, C.; Deng, Y. The effect of Zn content on the microstructure and mechanical properties of the Al-mg-Si alloy. Mater. Charact. 2023, 198, 112714. [Google Scholar] [CrossRef]
- Jang, H.W.; Hong, J.-W. Influence of Zinc Content on the Mechanical Behaviors of Cu-Zn Alloys by Molecular Dynamics. Materials 2020, 13, 2062. [Google Scholar] [CrossRef]
- Hong, H.L.; Wang, Q.; Dong, C.; Liaw, P.K. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys. Sci. Rep. 2014, 4, 7065. [Google Scholar] [CrossRef]
Defect | Definition |
---|---|
Intrinsic Stacking Fault (ISF) | A planar defect resulting from the removal or misplacement of an atomic plane in the close-packed sequence, commonly on {111} planes in FCC structures. |
Unstable Stacking Fault (USF) | A transition configuration corresponding to the maximum energy point along the generalized stacking fault energy (GSFE) path before reaching a stable ISF. |
Twin Fault | A mirror-symmetric stacking sequence across a twin boundary, typically formed by partial dislocation glide on adjacent planes. |
Anti-Phase Boundary (APB) | A defect in ordered alloys where the atomic sequence is shifted by a lattice translation vector, creating a phase shift between domains. |
Complex Stacking Fault (CSF) | A stacking fault that cannot be described by a single displacement vector and typically involves a combination of ISF and APB characteristics. |
Superlattice Intrinsic Stacking Fault (SISF) | A defect specific to ordered alloys like L1₂, formed by the displacement of atoms over multiple layers, leading to disruption of long-range order. |
Reduction Method | Model | Test R2 | MAE (mJ/m2) |
---|---|---|---|
UMAP | Random Forest | 0.86 | 15.46 |
UMAP | Extra Tree | 0.56 | 28.35 |
UMAP | CatBoost Regressor | 0.83 | 16.07 |
PCA | Random Forest | 0.64 | 47.73 |
PCA | Extra Tree | 0.8 | 18.56 |
PCA | Gradient Boosting | 0.58 | 31.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.T.; Broderick, S.R. A Data-Driven Framework for Accelerated Modeling of Stacking Fault Energy from Density of States Spectra. Crystals 2025, 15, 390. https://doi.org/10.3390/cryst15050390
Islam MT, Broderick SR. A Data-Driven Framework for Accelerated Modeling of Stacking Fault Energy from Density of States Spectra. Crystals. 2025; 15(5):390. https://doi.org/10.3390/cryst15050390
Chicago/Turabian StyleIslam, Md Tohidul, and Scott R. Broderick. 2025. "A Data-Driven Framework for Accelerated Modeling of Stacking Fault Energy from Density of States Spectra" Crystals 15, no. 5: 390. https://doi.org/10.3390/cryst15050390
APA StyleIslam, M. T., & Broderick, S. R. (2025). A Data-Driven Framework for Accelerated Modeling of Stacking Fault Energy from Density of States Spectra. Crystals, 15(5), 390. https://doi.org/10.3390/cryst15050390