Research Advancements in High-Temperature Constitutive Models of Metallic Materials
Abstract
1. Introduction
2. Overview of Commonly Used Experimental Equipment and Methods for Constitutive Model Research
3. Typical Constitutive Models and Their Modifications During Thermal Deformation Process
3.1. Arrhenius Equation and Its Modifications
3.2. Johnson–Cook Model and Its Revision
3.3. Fields–Backofen (FB) Model and Its Modifications
3.4. Z–A Model and Its Revision
3.5. Machine Learning-Based Constitutive Model
3.6. A Constitutive Model Based on Dynamic Response and Dynamic Recrystallization Mechanisms
3.6.1. A Constitutive Model Based on Dislocation Recovery Velocity Mechanism
3.6.2. A Constitutive Model Based on Dynamic Recrystallization Mechanism
3.7. Creep Behavior Model of High-Temperature Mechanical Properties
4. Characteristics and Applications of Constitutive Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Wang, L.; Zhang, S.; Liu, X.; Xiang, Y.; Lin, Y.; Tan, J. Analytical springback modelling for thermal-mechanical bending of TA18 tube under non-isothermal loading. Appl. Math. Model. 2025, 143, 115964. [Google Scholar] [CrossRef]
- Wang, R.; Huang, J.; Tian, Z.; Bai, Z.; Li, S.; Ji, X.; Zhao, Z.; Sun, C. Study on deformation behaviour of TA2/Q345R composite plate during heat treatment process. Int. J. Mater. Form. 2024, 17, 36. [Google Scholar] [CrossRef]
- Fan, X.; Han, X.; Hu, X.; Hua, L.; Zhuang, W.; Zhang, J.; Chai, F. Microstructure and mechanical property anisotropy behaviors of AA7075 cylindrical ring processed by hot forging. J. Alloys Compd. 2025, 1016, 178865. [Google Scholar] [CrossRef]
- Iwona, B.; Dariusz, K. The Influence of the Deformation Method on the Microstructure and Properties of Magnesium Alloy Mg-Y-RE-Zr. Materials 2022, 15, 2017. [Google Scholar] [CrossRef]
- Lei, C.; Wang, Q.; Tang, H.; Liu, T.; Li, Z.; Jiang, H.; Wang, K.; Ebrahimi, M.; Ding, W. Hot deformation constitutive model and processing maps of homogenized Al-5Mg-3Zn-1Cu alloy. J. Mater. Res. Technol. 2021, 14, 324–339. [Google Scholar] [CrossRef]
- Jia, X.D.; Yuan, R.J.; He, L.Y.; Cao, M.Y.; Wang, R.; Zhao, C.C. Plastic Deformation Behavior of 5A02 Aluminum Alloy Sheet at High Temperature. Rare Met. Mater. Eng. 2020, 49, 7. [Google Scholar]
- Ma, L.X.; He, D.Y.; Yang, B.J.; Han, X.Q.; Zhang, J.C.; Li, W.D. Construction and application of a physically-based constitutive model for superplastic deformation of near-α TNW700 titanium alloy. J. Mater. Res. Technol. 2025, 34, 2071–2089. [Google Scholar] [CrossRef]
- Zhong, M.J.; Yu, H.; Wang, Z.R.; Zhang, X.M.; Qu, J.L. Hot deformation behavior and process parameters optimization of GH4738 nickel-based superalloy. J. Mater. Res. Technol. 2024, 33, 7990–8001. [Google Scholar] [CrossRef]
- Luo, Y.W.; Shi, C.B.; Xu, H.C. Microstructure evolution and hot deformation characteristics of 15Cr-22Ni iron-base superalloy. J. Alloys Compd. 2023, 938, 168628. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, Y.C.; Su, G.; Xie, Y.; Qiu, W.; Zeng, N.; Zhang, S.; Wu, G. Hot deformation physical mechanisms and a unified constitutive model of a solid solution Ti55511 alloy deformed in the two-phase region. J. Mater. Res. Technol. 2025, 34, 1591–1610. [Google Scholar] [CrossRef]
- Chen, X.M.; Ning, M.T.; Hu, H.W.; Lin, Y.C.; Zhou, X.J.; Zhang, J.; Chen, J.; Liu, Y.X. Characterization of hot deformation behavior and optimization of hot workability for GH4698 superalloy. Mater. Charact. 2023, 201, 112916. [Google Scholar] [CrossRef]
- Zhang, F.; Shen, J.; Yan, X.D. Constitutive Analysis to Predict High-Temperature Flow Stress in 2099 Al-Li Alloy. Rare Met. Mater. Eng. 2014, 43, 1312–1318. [Google Scholar]
- Liu, L.J.; Lv, M.; Wu, W.G. Recrystallization Softening Effect in the Improved Constitutive Equation for TI-6AL-4V Alloy. Rare Met. Mater. Eng. 2014, 43, 1367–1371. [Google Scholar]
- Zhang, T.; Zhang, S.H.; Li, L.; Lu, S.H.; Gong, H. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression. J. Cent. South Univ. 2019, 26, 2930–2942. [Google Scholar] [CrossRef]
- Wang, N.; Andrey, I.; Chen, M.H.; Lucky, G.; D’Amours, G. Comparative Study on Constitutive Models for Flow Behavior of High Strength Aluminum Alloy AA7075 in Hot Stamping. Rare Met. Mater. Eng. 2020, 49, 10–20. [Google Scholar]
- Zhou, M.; Clode, M.P. Hot torsion tests to model the deformation behavior of aluminium alloys at hot working temperatures. J. Mater. Process. Technol. 1977, 72, 78. [Google Scholar] [CrossRef]
- Sellars, C.M.; McTegart, W.J. On the mechanism of hot deformation. Acta Metall. 1966, 14, 1136. [Google Scholar] [CrossRef]
- Wang, M.H.; Yang, Y.C.; Tu, S.L.; Wei, K. A modified constitutive model and hot compression instability behavior of Cu-Ag alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 764–774. [Google Scholar] [CrossRef]
- Shan, S.L.; Jie, Z.; Meng, M.Z.; Zhou, Y.T.; Gong-Ye, F.J.; Long, S.; Dong, X.G.; Liang, Q. A comparative study at the flow behavior description of 2A14 alloy using BP-ANN and strain compensated Arrhenius model. Mater. Res. Express 2020, 6, 1265h1. [Google Scholar]
- Haghdadi, N.; Zarei-Hanzaki, A.; Abedi, H.R. The flow behavior modeling of cast A356 aluminum alloy at elevated temperatures considering the effect of strain. Mater. Sci. Eng. A 2012, 535, 252–257. [Google Scholar] [CrossRef]
- Liu, S.H.; Pan, Q.L.; Li, H. Characterization of hot deformation behavior and constitutive modeling of Al-Mg-Si-Mn-Cr alloy. J. Mater. Sci. 2019, 54, 4366–4383. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Y.X. Modification of constitutive model and evolution of activation energy on 2219 aluminum alloy during warm deformation process. Trans. Nonferrous Met. Soc. China 2019, 29, 448–459. [Google Scholar] [CrossRef]
- Quan, G.Z.; Zou, Z.Y.; Wang, T. Modeling the Hot Deformation Behaviors of As-Extruded 7075 Aluminum Alloy by an Artificial Neural Network with Back-Propagation Algorithm High Temperature. Mater. Process. 2017, 36, 1–13. [Google Scholar] [CrossRef]
- Xiang, Y.L.; Xiao, S.F.; Tang, Z.H. The flow behavior of homogenizated Al-Mg-Si-La aluminum alloy during hot deformation. Mater. Res. Express 2019, 6, 066563. [Google Scholar] [CrossRef]
- Li, Y.F.; Wang, Z.H.; Zhang, L.Y.; Luo, C.; Lai, X.C. Arrhenius-type constitutive model and dynamic recrystallization behavior of V-5Cr-5Ti alloy during hot compression. Trans. Nonferrous Met. Soc. China 2015, 25, 1889–1900. [Google Scholar] [CrossRef]
- Zhao, X.-H.; Liu, D.-D.; Wu, X.H.; Liu, G.R.; Chen, L. Flow behavior and constitutive description of 20CrMnTi steel at high temperature. J. Cent. South Univ. 2018, 25, 1013–1024. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, M.S.; Zhang, J. Modeling of flow stress of 42CrMo steel under hot compression. Mater. Sci. Eng. A 2009, 499, 88–92. [Google Scholar] [CrossRef]
- Chen, C.; Chen, M.H.; Xie, L.S.; Gong, Z.H. Flow Behavior of TA32 Titanium Alloy at High Temperature and Its Constitutive Model. Rare Met. Mater. Eng. 2019, 48, 827–834. (In Chinese) [Google Scholar]
- Jiang, F.; Liang, Y.F.; Hong, J.; Zhang, Y.; Feng, Z.; Zhao, S. Constitutive model research on the hot deformation behavior of Ti6Al4V alloy under wide temperatures. J. Mater. Res. Technol. 2023, 23, 1062–1074. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, R.; Chen, X.; Jin, S.; Qian, Q.; Wu, H. An optimized strain-compensated arrhenius constitutive model of GH4169 superalloy based on hot compression. Materials 2024, 17, 3400. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qin, G.L.; Li, C.A. A modified Arrhenius constitutive model of 2219-O aluminum alloy based on hot compression with simulation verification. J. Mater. Res. Technol. 2022, 19, 3302–3320. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983. [Google Scholar]
- Rasaee, S.; Mirzaei, A.H. Constitutive Modeling of 2024 Aluminum Alloy Based on the Johnson-Cook Model. Trans. Indian Inst. Met. 2019, 72, 1023–1030. [Google Scholar] [CrossRef]
- Bobbili, R.; Madhu, V. Constitutive Modeling of Hot Deformation Behavior of High-Strength Armor Steel. J. Mater. Eng. Perform. 2016, 25, 1829–1838. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, X.M.; Liu, G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel. Mater. Sci. Eng. A 2010, 527, 6980–6986. [Google Scholar] [CrossRef]
- He, L.J.; Chen, F.; Wang, B.; Zhu, L.B. A modified Johnson-Cook model for 10% Cr steel at elevated temperatures and a wide range of strain rates. Mater. Sci. Eng. A 2018, 715, 1–9. [Google Scholar] [CrossRef]
- Liu, E.L.; Xing, H.W.; Wang, M.M.; Xu, Z.C.; Zhao, N. J-C constitutive modeling of high temperature alloys Inconel625. Chin. J. Nonferrous Met. 2018, 28, 732–741. (In Chinese) [Google Scholar]
- Hui, X.L.; Bai, C.Y.; Ge, Y.J.; Shu, W. Dynamic properties of 2A16 aluminum alloy under intermediate strain rate. J. Vib. Shock 2017, 36, 66–70. (In Chinese) [Google Scholar]
- Shokry, A.; Gowid, S.; Kharmanda, G. An improved generic Johnson-Cook model for the flow prediction of different categories of alloys at elevated temperatures and dynamic loading conditions. Mater. Today Commun. 2021, 27, 102296. [Google Scholar] [CrossRef]
- Jiang, X.; Ding, J.; Wang, C.; Liu, H. Parameter identification of Johnson-Cook constitutive model based on genetic algorithm and simulation analysis for 304 stainless steel. Sci. Rep. 2024, 14, 21221. [Google Scholar] [CrossRef]
- Nguyen, N.; Hosseini, A. Direct calculation of Johnson-Cook constitutive material parameters for oblique cutting operations. J. Manuf. Process. 2023, 92, 226–237. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zeng, X.G.; Chen, H.Y.; Yang, X.; Wang, F.; Zeng, L.X. Modified Johnson-Cook constitutive model of metallic materials under a wide range of temperatures and strain rates. Results Phys. 2021, 27, 104498. [Google Scholar] [CrossRef]
- Shen, W.J.; Xue, F.M.; Li, C.Z.; Liu, Y.; Mo, X.Y. Study on constitutive relationship of 6061 aluminum alloy based on Johnson-Cook model. Mater. Today Commun. 2023, 37, 106982. [Google Scholar] [CrossRef]
- Chen, X.M.; Lin, Y.C.; Hu, H.W.; Luo, S.C.; Zhou, X.J.; Huang, Y. An Enhanced Johnson-Cook Model for Hot Compressed A356 Aluminum Alloy. Adv. Eng. Mater. 2020, 23, 2000704. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, X. A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel. Comput. Mater. Sci. 2010, 49, 628–633. [Google Scholar] [CrossRef]
- Zhang, Z.; Lang, L.H.; Li, T.; Liu, H. Constitutive equations of high strength aluminum alloy sheet 7B04-T6 under warm tension. J. Beijing Univ. Aeronaut. Astronaut. 2009, 35, 600–603. [Google Scholar]
- Tong, Y.; Quan, Z.G.; Luo, G.; Zhou, J. A Study on the Flow Behavior of 42CrMo Steel under Hot Compression by Thermal Physical Simulations. Adv. Mater. Res. 2010, 933, 494–499. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, Y.L.; Guo, H.; Qian, P.C.; Tang, H.Y.; Ye, L.Y. Effect of strain rate on tenile properties of Al-Zn-Mg alloy. J. Funct. Mater. 2017, 48, 7215–7220. (In Chinese) [Google Scholar]
- Chang, L.; Zhou, C.-Y.; Peng, J.; Li, J.; He, X.H. Fields-Backofen and a Modified Johnson-Cook Model for CP-Ti at Ambient and Intermediate Temperature. Rare Met. Mater. Eng. 2017, 46, 1803–1809. [Google Scholar]
- Jiao, Z.H.; Lang, L.H.; Zhao, X.N. 5A06-O aluminium-magnesium alloy sheet warm hydroforming and optimization of process parameters. Trans. Nonferrous Met. Soc. China 2021, 31, 2939–2948. [Google Scholar] [CrossRef]
- Li, S.J.; Chen, W.N.; Jain, S.; Jung, D.; Lee, J. Optimization of flow behavior models by genetic algorithm: A case study of aluminum alloy. J. Mater. Res. Technol. 2024, 31, 3349–3363. [Google Scholar] [CrossRef]
- Huang, X.; Wang, B.; Zang, Y.; Ji, H.; Guan, B.; Li, Y.; Tang, X. Constitutive relationships of 21-4N heat-resistant steel for the hot forging process. J. Mater. Res. Technol. 2020, 9, 13575–13593. [Google Scholar] [CrossRef]
- Seshacharyulu, K.; Mahalle, G.; Kotkunde, N.; Singh, S.K.; Naik, B.B. Analysis of tensile deformation behaviour of dual phase-590 steel at different temperatures and strain rates. Mater. Process. Technol. 2022, 8, 1647–1663. [Google Scholar] [CrossRef]
- He, Z.B.; Wang, Z.B.; Lin, Y.L. Hot Deformation Behavior of a 2024 Aluminum Alloy Sheet and its Modeling by Fields-Backofen Model Considering Strain Rate Evolution. Metals 2019, 9, 243. [Google Scholar] [CrossRef]
- Ji, G.L.; Li, L.; Qin, L.F.; Li, Q. Comparative study of phenomenological constitutive equations for an as-rolled M50NiL steel during hot deformation. J. Alloys Compd. 2017, 695, 2389–2399. [Google Scholar] [CrossRef]
- Abdallah, S. Modified Fields-Backofen and Zerilli-Armstrong constitutive models to predict the hot deformation behavior in titanium-based alloys. Sci. Rep. 2024, 14, 8359. [Google Scholar]
- Zhou, W.H. Plastic Deformation Behaviors of Pre-Strained Aluminum Under High Strain Rate Loadings. Master’s Thesis, Nanchang Hangkong University, Nanchang, China, 2014. (In Chinese). [Google Scholar]
- Tsao, L.C.; Wu, H.Y.; Leong, J.C.; Fang, C.J. Flow stress behavior of commercial pure titanium sheet during warm tensile deformation. Mater. Des. 2012, 34, 179–184. [Google Scholar] [CrossRef]
- Lin, H.; Meng, F.Z.; Song, Y.L.; Liu, J.N.; Qin, X.P.; Suo, L.B. A constitutive model of 6111-T4 aluminum alloy sheet based on the warm tensile test. J. Mater. Eng. Perform. 2014, 23, 1107–1113. [Google Scholar]
- Chen, F.; Jia, Z.; Zhang, X.; Jiao, Y.; Li, F.; Zhang, X. Hot deformation behavior and comparison of different constitutive models of as-cast ER8 steel. Metall. Res. Technol. 2023, 120, 403. [Google Scholar] [CrossRef]
- Zerilli, F.J.; Armstrong, R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 1987, 61, 1816–1825. [Google Scholar] [CrossRef]
- Akbari, Z.; Mirzadeh, H.; Cabrera, J.M. A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation. Mater. Eng. 2015, 77, 126–131. [Google Scholar] [CrossRef]
- Li, F.; Zhu, C.C.; Li, S.J.; Hong, J.; Zhang, P.; Yang, R.G.; Zhao, S.D. A comparative study on modified and optimized Zerilli-Armstrong and arrhenius-type constitutive models to predict the hot deformation behavior in 30Si2MnCrMoVE steel. J. Mater. Res. Technol. 2022, 20, 3918–3929. [Google Scholar] [CrossRef]
- Gurusamy, M.M.; Rao, B.C. On the performance of modifed Zerilli-Armstrong constitutive model in simulating the metal cutting process. J. Manuf. Process. 2017, 28, 253–265. [Google Scholar] [CrossRef]
- Samantaray, D.; Mandal, S.; Borah, U.; Bhaduri, A.K.; Sivaprasad, P.V. A thermo-viscoplastic constitutive model to predict elevated-temperature fow behaviour in a titanium-modifed austenitic stainless steel. Mater. Sci. Eng. A 2009, 526, 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Ren, X.W.; Xiao, Z.B.; Zhang, X.Y.; Huang, Y.C. Flow stress prediction of Hastelloy C-276 alloy using modified Zerilli-Armstrong, Johnson-Cook and Arrhenius-type constitutive models. Trans. Nonferrous Met. Soc. China 2020, 30, 3031–3042. [Google Scholar] [CrossRef]
- Murugesan, M.; Jung, D.W. Two flow stress models for describing hot deformation behavior of AISI-1045 medium carbon steel at elevated temperatures. Heliyon 2019, 5, 4. [Google Scholar] [CrossRef]
- Lewis, J.; Pasco, J.; McCarthy, T.; Chadha, K.; Harding, M.; Aranas Jr, C. High strain rate and high temperature mechanical response of additively manufactured alloy 625. J. Manuf. Process. 2022, 81, 922–944. [Google Scholar] [CrossRef]
- Li, T.Y.; Zhao, B.; Lu, X.Q.; Xu, H.Z.; Zou, D.Q. A comparative study on Johnson Cook, modified Zerilli-Armstrong, and Arrhenius-type constitutive models to predict compression flow behavior of SnSbCu Alloy. Materials 2019, 12, 1726. [Google Scholar] [CrossRef] [PubMed]
- Shokry, A. On the constitutive modeling of a powder metallurgy nanoquasicrystalline Al93Fe3Cr2Ti2 alloy at elevated temperatures. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 118. [Google Scholar] [CrossRef]
- Singh, G.; Chakraborty, P.; Tiwari, V. A comparative study of different constitutive models to predict the dynamic flow behaviour of a homogenised AT61 magnesium alloy. In Structures; Elsevier: Amsterdam, The Netherlands, 2023; Volume 54, pp. 631–643. [Google Scholar]
- Yu, R.; Li, X.; Li, W.; Chen, J.; Guo, X.; Li, J. Application of four different models for predicting the high-temperature flow behavior of TG6 titanium alloy. Mater. Today Commun. 2021, 26, 102004. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, K.L.; Lu, S.Q.; Li, X.; OuYang, D.L. Hot Deformation Behavior of Ti2041 Alloy Based on BP Neural Network and 3D Processing Map. Rare Met. Mater. Eng. 2021, 50, 1233–1240. [Google Scholar]
- Zhang, J.P.; Gao, P.F.; Fang, F. An ATPSO-BP neural network modeling and its application in mechanical property prediction. Comput. Mater. Sci. 2019, 163, 262–266. [Google Scholar] [CrossRef]
- Zheng, D.Y.; Xia, Y.F.; Teng, H.H.; Yu, Y.Y. Application of genetic algorithm to enhance the predictive stability of BP-ANN constitutive model for GH4169 superalloy. J. Cent. South Univ. 2024, 31, 693–708. [Google Scholar] [CrossRef]
- Ling, Q.; Inoue, J.Y.; Zhu, J.C. Machine learning guided constitutive model and processing map for Fe2Ni2CrAl1. 2 multi-principle element alloys. J. Mater. Res. Technol. 2024, 29, 353–363. [Google Scholar]
- Emami, H.; Ghazani, S.M. An interpretable stacking machine-learning model to predict the hot torsion flow characteristics of a micro-alloyed steel. Results Eng. 2025, 26, 105326. [Google Scholar] [CrossRef]
- Hussain, A.; Sakhaei, A.H.; Shafiee, M. Machine learning-based constitutive modelling for material non-linearity: A review. Mech. Adv. Mater. Struct. 2024, 14, 1–19. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, H.; Li, B. Predicting the fatigue life of additively manufactured AlSi10Mg alloy using a physics-informed neural network incorporating continuous damage mechanics. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 2024, 09544054241290283. [Google Scholar] [CrossRef]
- Jeong, H.; Bai, J.; Batuwatta-Gamage, C.P.; Rathnayaka, C.; Zhou, Y.; Gu, Y. A Physics-Informed Neural Network-based Topology Optimization (PINNTO) framework for structural optimization. Eng. Struct. 2023, 278, 115484. [Google Scholar] [CrossRef]
- Xu, C.; Cao, B.T.; Yuan, Y.; Meschke, G. Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios. Comput. Methods Appl. Mech. Eng. 2023, 405, 115852. [Google Scholar] [CrossRef]
- Linka, K.; Hillgärtner, M.; Abdolazizi, K.P.; Aydin, R.C.; Itskov, M.; Cyron, C.J. Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning. J. Comput. Phys. 2021, 429, 110010. [Google Scholar] [CrossRef]
- Shoghi, R.; Alexander, H. A machine learning constitutive model for plasticity and strain hardening of polycrystalline metals based on data from micromechanical simulations. Mach. Learn. 2024, 5, 025008. [Google Scholar] [CrossRef]
- Long, J.; Deng, L.; Jin, J.S.; Zhang, M.; Tang, X.F.; Gong, P.; Wang, X.Y.; Xiao, G.F.; Xia, Q.X. Enhancing constitutive description and workability characterization of Mg alloy during hot deformation using machine learning-based Arrhenius-type model. J. Magnes. Alloys 2024, 12, 3003–3023. [Google Scholar] [CrossRef]
- Jia, B.; Peng, Y. Constitutive relationship of Nb Micro alloyed Steel During High Temperature Deformation. Acta Metall. Sin. 2011, 47, 507–512. [Google Scholar]
- Sun, Y.; Zhang, H.; Wan, Z.P.; Ren, L.L.; Hu, L.X. Establishment of a novel constitutive model considering dynamic recrystallization behavior of Ti-22Al-25Nb alloy during hot deformation. Trans. Nonferrous Met. Soc. China 2019, 29, 546–557. [Google Scholar] [CrossRef]
- Beltran, O.; Huang, K.; Logé, R.E. A mean field model of dynamic and post-dynamic recrystallization predicting kinetics, grain size and flow stress. Comput. Mater. Sci. 2015, 102, 293–303. [Google Scholar] [CrossRef]
- Yang, L.; Dong, J.X.; Zhang, M.C. Deformation Behavior and Dynamic Recrystallization Model for 690 Alloy at Elevated Temperature. Rare Met. Mater. Eng. 2012, 41, 727–732. [Google Scholar]
- Sarkar, A.; Chakravartty, J.K.; Samajdar, I. The Avrami kinetics of dynamic recrystallization in cadmium. Metall. Mater. Trans. A 2010, 41, 2466–2470. [Google Scholar] [CrossRef]
- Chu, Z.B.; Zhang, D.; Ma, L.F.; Jiang, L.Y.; Li, Y.G.; Huang, Q.X. Constitutive Equation of As-Cast AZ31B Magnesium Alloy Based on Dynamic Recrystallization. Rare Met. Mater. Eng. 2018, 47, 124–130. [Google Scholar]
- Huang, Y.-C.; Li, M.; Ma, C.-Q.; Xiao, Z.B.; Liu, Y. Flow behaviour constitutive model of CuCrZr alloy and 35CrMo steel based on dynamic recrystallization softening effect under elevated temperature. J. Cent. South Univ. 2019, 26, 1550–1562. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Lin, Y.C.; Wang, G.Q.; Pang, G.D.; Chen, M.S.; Huang, Z.C. Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β region. J. Alloys Compd. 2021, 870, 159534. [Google Scholar] [CrossRef]
- Sellars, C.M. Modelling microstructural development during hot rolling. Mater. Sci. Technol. 1990, 6, 1072–1081. [Google Scholar] [CrossRef]
- Quan, G.Z.; Zhang, P.; Zhang, Y.Q.; Zhang, Y.Q.; Lu, C.L. Characterization of grain growth behaviors by BP-ANN and Sellars models for nickle-base superalloy and their comparisons. Trans. Nonferrous Met. Soc. China 2020, 30, 2435–2448. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Wang, W.D.; Gao, W. Prediction of the mechanical properties of hot-rolled C Mn steels using artificial neural networks. J. Mater. Process. Technol. 1996, 57, 332–336. [Google Scholar] [CrossRef]
- Sung-Il, K.; Lee, Y.S.; Lee, D.-L.; Yoo, Y.-C. Modeling of AGS and recrystallized fraction of microalloyed medium carbon steel during hot deformation. Mater. Sci. Eng. A 2003, 355, 384–393. [Google Scholar] [CrossRef]
- Karhausen, K.; Kopp, R.; Souza, M.M.D. Numerical simulation method for designing thermomechanical treatments, illustrated by bar rolling. Scand. J. Metall. 1991, 20, 351–363. [Google Scholar]
- Song, G.; Sang, Y.; Li, Q.H.; Sun, L.Y.; Wu, Y.H.; Wang, H.R. Constitutive modeling and microstructure research on the deformation mechanism of Ti-6Al-4V alloy under hot forming condition. J. Alloys Compd. 2022, 892, 162128. [Google Scholar]
- He, L.G.; Zhou, L.; Su, J.Q.; Zhang, B.; Shi, W.B. Comparative of Creep Constitutive Model of Aluminum Alloy Material for Piston. Trans. CSICE 2022, 40, 364–370. (In Chinese) [Google Scholar]
- Varmazyar, M.; Yousefzadeh, S.; Sheikhi, M.M. Effect of Ni on microstructure and creep behavior of A356 aluminum alloy. Met. Mater. Int. 2022, 28, 579–588. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Zhang, Y.; Yi, D.Q.; Deng, X.; Wang, B. Low-temperature creep behavior and microstructural evolution of 8030 aluminum cables. Mater. Charact. 2017, 130, 181–187. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, Y.L.; Zhang, X.M. Constitutive modeling for creep age forming of heat-treatable strengthening aluminum alloys containing plate or rod shaped precipitates. Mater. Sci. Eng. A 2013, 563, 8–15. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Wang, J.Y.; Hao, W.F.; Guo, G.P. Creep life evaluation of aluminum conductor composite core utilized in high voltage electric transmission. Polym. Test. 2017, 63, 573–581. [Google Scholar] [CrossRef]
- Monkman, E.C.; Grant, N.J. An empirical relationship between rupture life and minimum creep rate in creeprupture tests. Proc. ASTM Int. 1956, 56, 593–620. [Google Scholar]
- Siqueira, R.P.; Sandim, H.R.Z.; Oliveira, T.; Raabe, D. Composition and orientation effects on the final recrystallization texture of coarse-grained Nb-containing AISI 430 ferritic stainless steels. Mater. Sci. Eng. A 2011, 528, 3513–3519. [Google Scholar] [CrossRef]
- Larson, F.R.; Miler, J. A time-temperature relationship for rupture and creep stresses. ASME Trans 1952, 74, 765–775. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Igarashi, M.; Moriguchi, K.; Iseda, A.; Armaki, H.G.; Maruyama, K. Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants. Mater. Sci. Eng. 2009, A510, 162–168. [Google Scholar] [CrossRef]
- Norton, B. The Creep of Steel at High Temperatures; McGraw-Hill Book Company Inc.: New York, NY, USA, 1929. [Google Scholar]
- Hays, T.A.; Kassner, M.E. Creep of zirconium and zirconium alloys. Metall. Mater. Trans. 2006, 37, 2389–2396. [Google Scholar] [CrossRef]
- Erami, M.; Daei-sorkhabi, A.H.; Vakili-Tahami, F. Creep constitutive equations for as-received 9Cr1Mo steel. Int. J. Press. Vessel. Pip. 2019, 176, 103947. [Google Scholar] [CrossRef]
- Zuo, L.J.; Ye, B.; Feng, J.; Ding, W. Microstructure, tensile properties and creep behavior of Al-12Si-3.5Cu-2Ni-0.8Mg alloy produced by different casting technologies. J. Mater. Sci. Technol. 2018, 34, 1222–1228. [Google Scholar] [CrossRef]
- Charit, I.; Murty, K.L. Creep behavior of niobium-modified zirconium alloys. J. Nucl. Mater. 2008, 374, 354–363. [Google Scholar] [CrossRef]
- Kim, J.Y.; Na, K.S.; Kim, Y.D.; Kim, H.J.; Kim, K.N.; Kim, S.J. Creep behavior of Zr-1.5Nb-0.4Sn-0.1Fe-0.1Cu alloy. Acta Mech. SolidaSinica 2008, 21, 308–311. [Google Scholar] [CrossRef]
- Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Ichkova, M.D. Modeling of strain hardening and creep behaviour of 2024T3 aluminium alloy at room and high temperatures. Comput. Mater. Sci. 2014, 83, 381–393. [Google Scholar] [CrossRef]
- Wilshire, B.; Scharning, P.J. Creep and creep facture of commercial aluminum alloy. J. Mater. Sci. 2008, 43, 3992–4000. [Google Scholar] [CrossRef]
- Lin, Y.C.; Jiang, Y.Q.; Zhou, H.M.; Liu, Z. A new creep constitutive model for 7075 aluminum alloy under elevated temperatures. J. Mater. Eng. Perform. 2014, 23, 4350–4357. [Google Scholar] [CrossRef]
- Ding, F.J.; Jia, X.D.; Hong, T.J.; Xu, Y.L. Flow Stress Prediction Model of 6061 Aluminum Alloy Sheet Based on GA-BP and PSO-BP Neural Networks. Rare Met. Mater. Eng. 2020, 49, 1840–1853. [Google Scholar]
Models | Advantages | Disadvantages | Application |
---|---|---|---|
Arrhenius model | The relationship between steady-state stress and major deformation parameters is commonly represented through various models. | However, these models often involve a large number of material constants, making the solving process complex and time-consuming. Additionally, they fail to accurately reflect intricate thermal processing phenomena such as dynamic recovery and recrystallization. Consequently, these models exhibit poor stability and have limited applicability. | Steel, aluminum alloy, magnesium alloy, and titanium alloy |
J–C model | They are suitable for materials where the work hardening rate increases with strain rate, including aluminum alloys, steel, oxygen-free high-conductivity (OFHC) copper, and nickel. These models typically feature a simple form with fewer parameters that align more closely with practical cutting scenarios and facilitate ease of application. They are often integrated with finite element simulation software Abaqus to model the experimental processes involved in hot working forming of metal materials. | There are inherent limitations in describing strain hardening saturation within these frameworks. | Suitable for materials where the work hardening rate increases with increasing strain rate: aluminum alloy, steel, TA32 alloy, superalloy GH4742, OFHC copper, and nickel |
FB model | Despite their advantages, there remain certain constraints when it comes to characterizing strain hardening saturation effectively. The simplicity of these forms allows for minimal computational requirements while being applicable to most metallic materials—such as high-strength aluminum alloys like 2024 aluminum alloy. | However, due to insufficient consideration of how flow stress depends on primary deformation parameters or softening mechanisms, this model may yield inaccurate predictions regarding the rheological stress behavior of specific alloys. | 5A06-O aluminum alloy, 42 CrMo steel |
Z–A model | The Z–A model stands out for its relative simplicity combined with relatively high computational efficiency and accuracy. | It features different expressions tailored for various structural types due to distinct strain rate control mechanisms associated with specific structures; however, calculating material constants can be both time-consuming and challenging during development. | 625 alloy, SnSbCu alloy, C-276 Hastelloy alloy, and AZ80 magnesium alloy |
Machine learning-based model | This approach does not necessitate any mathematical modeling yet achieves higher prediction accuracy along with optimal predictive performance while requiring less computation time overall. | To enable machine learning algorithms to predict complex material behaviors under unknown conditions effectively, it is essential to provide sufficient representative data inputs into these systems. The application of the model is limited, and the integration with finite element analysis software is overly complex. | Suitable for most metal materials |
DRV-DRX model | Comprehensive consideration of micromechanisms. | A large number of material constants | CuCrZr alloy, 35 CrMo steel |
Creep behavior model | This model main examines the deformation characteristics and creep mechanisms of high-strength aluminum alloys, stainless steel, and other metallic materials across three stages of creep. | The solving process is intricate and time-consuming. | 2024-T3, 7010, 7075 aluminum alloy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, F.; Hong, T.; Dong, F.; Huang, D. Research Advancements in High-Temperature Constitutive Models of Metallic Materials. Crystals 2025, 15, 699. https://doi.org/10.3390/cryst15080699
Ding F, Hong T, Dong F, Huang D. Research Advancements in High-Temperature Constitutive Models of Metallic Materials. Crystals. 2025; 15(8):699. https://doi.org/10.3390/cryst15080699
Chicago/Turabian StyleDing, Fengjuan, Tengjiao Hong, Fulong Dong, and Dong Huang. 2025. "Research Advancements in High-Temperature Constitutive Models of Metallic Materials" Crystals 15, no. 8: 699. https://doi.org/10.3390/cryst15080699
APA StyleDing, F., Hong, T., Dong, F., & Huang, D. (2025). Research Advancements in High-Temperature Constitutive Models of Metallic Materials. Crystals, 15(8), 699. https://doi.org/10.3390/cryst15080699