Boosting the Photocatalytic Behavior of PbS/TiO2 Nanocomposites via the Pulsed Laser Deposition of PbS Nanoparticles onto TiO2 Nanotube Arrays Under Various Helium Background Pressures
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of TiO2 Nanotubes
2.2. Decoration of TiO2 Nanotubes by PbS-NPs
2.3. Materials Characterizations
2.4. Photocatalytic Activity Measurement
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C 2008, 9, 1–12. [Google Scholar] [CrossRef]
- Balati, A.; Tek, S.; Nash, K.; Shipley, H. Nanoarchitecture of TiO2 microspheres with expanded lattice interlayers and its heterojunction to the laser modified black TiO2 using pulsed laser ablation in liquid with improved photocatalytic performance under visible light irradiation. J. Colloid Interface Sci. 2019, 541, 234–248. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; El Khakani, M.A. Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production. Electrochim. Acta 2013, 87, 18–31. [Google Scholar] [CrossRef]
- Hammouche, J.; Daoudi, K.; Columbus, S.; Ziad, R.; Ramachandran, K.; Gaidi, M. Structural and morphological optimization of Ni doped ZnO decorated silicon nanowires for photocatalytic degradation of methylene blue. Inorg. Chem. Commun. 2021, 131, 108763. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, J.; Zhu, J.; Fan, L.; Chen, H.; He, H.; Wang, Q. Visible light photocatalytic performance of laser-modified TiO2/SnO2 powders decorated with SiC nanocrystals. Ceram. Int. 2019, 45, 12449–12454. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Bahnemann, D.W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089–5121. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium dioxide applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Delegan, N.; El Khakani, M.A. Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2 photoanode under sunlight irradiations. Water Res. 2013, 47, 6801–6810. [Google Scholar] [CrossRef] [PubMed]
- Komtchou, S.; Delegan, N.; Dirany, A.; Drogui, P.; El Khakani, M.A. Photo-electrocatalytic oxidation of atrazine using sputter deposited TiO2: WN photoanodes under UV/visible light. Catal. Today 2020, 340, 323–333. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Ka, I.; El Khakani, M.A. Photoelectrocatalytic degradation of chlortetracycline using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process. J. Hazard. Mater. 2012, 199, 15–24. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Raza, W.; Hwang, I.; Denisov, N.; Schmuki, P. Thermal ramping rate during annealing of TiO2 nanotubes greatly affects performance of photoanodes. Phys. Status Solidi 2021, 218, 2100040. [Google Scholar] [CrossRef]
- Hanaor, D.A.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Khalid, N.R.; Majid, A.; Tahir, M.B.; Niaz, N.A.; Khalid, S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int. 2017, 43, 14552–14571. [Google Scholar] [CrossRef]
- Zhu, K.; Neale, N.R.; Miedaner, A.; Frank, A.J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007, 7, 69–74. [Google Scholar] [CrossRef]
- Hajjaji, A.; Amlouk, M.; Gaidi, M.; Bessais, B.; El Khakani, M.A. Gas Sensors and Photo-Conversion Applications. In Chromium Doped TiO2 Sputtered Thin Films; Springer: Berlin/Heidelberg, Germany, 2015; pp. 57–74. [Google Scholar]
- Wang, Z.; Haidry, A.A.; Xie, L.; Zavabeti, A.; Li, Z.; Yin, W.; Fomekong, R.L.; Saruhan, B. Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydro-thermal method. Appl. Surf. Sci. 2020, 533, 147383. [Google Scholar] [CrossRef]
- Gao, C.; Wei, T.; Zhang, Y.; Song, X.; Huan, Y.; Liu, H.; Zhao, M.; Yu, J.; Chen, X. A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Adv. Mater. 2019, 31, 1806596. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, W. Dual photocatalytic pathways of trichloroacetate degradation on TiO2: Effects of nanosized platinum deposits on kinetics and mechanism. J. Phys. Chem. B 2002, 106, 13311–13317. [Google Scholar] [CrossRef]
- Schaaff, T.G.; Blom, D.A. Deposition of Au-nanocrystals on TiO2 crystallites. Nano Lett. 2002, 2, 507–511. [Google Scholar] [CrossRef]
- Delegan, N.; Daghrir, R.; Drogui, P.; El Khakani, M.A. Bandgap tailoring of in-situ nitrogen-doped TiO2 sputtered films intended for electrophotocatalytic applications under solar light. J. Appl. Phys. 2014, 116, 153510. [Google Scholar] [CrossRef]
- Delegan, N.; Pandiyan, R.; Johnston, S.; Dirany, A.; Komtchou, S.; Drogui, P.; El Khakani, M.A. Lifetime enhancement of visible light induced photocharges in tungsten and nitrogen in situ codoped TiO2: WN thin films. J. Phys. Chem. C 2018, 122, 5411–5419. [Google Scholar] [CrossRef]
- Nah, Y.-C.; Paramasivam, I.; Schmuki, P. Doped TiO2 and TiO2 nanotubes: Synthesis and applications. ChemPhysChem 2010, 11, 2698–2713. [Google Scholar] [CrossRef]
- Vitiello, R.P.; Macak, J.M.; Ghicov, A.; Tsuchiya, H.; Dick, L.F.P.; Schmuki, P. N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem. Commun. 2006, 8, 544–548. [Google Scholar] [CrossRef]
- Favet, T.; Cottineau, T.; Keller, V.; El Khakani, M.A. Comparative study of the photocatalytic effects of pulsed laser deposited CoO and NiO nanoparticles onto TiO2 nanotubes for the photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells 2020, 217, 110703. [Google Scholar] [CrossRef]
- Hajjaji, A.; Elabidi, M.; Trabelsi, K.; Assadi, A.A.; Bessais, B.; Rtimi, S. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity. Colloids Surf. B 2018, 170, 92–98. [Google Scholar] [CrossRef]
- Gaidi, M.; Trabelsi, K.; Hajjaji, A.; Chourou, M.L.; Alhazaa, A.N.; Bessais, B.; A El Khakani, M. Optimizing the photochemical conversion of UV-vis light of silver-nanoparticles decorated TiO2 nanotubes based photoanodes. Nanotechnology 2017, 29, 015703. [Google Scholar] [CrossRef]
- Favet, T.; Keller, V.; Cottineau, T.; El Khakani, M.A. Enhanced visible-light-photoconversion efficiency of TiO2 nanotubes decorated by pulsed laser deposited CoNi nanoparticles. Int. J. Hydrog. Energy 2019, 44, 28656–28667. [Google Scholar] [CrossRef]
- Hajjaji, A.; Jemai, S.; Rebhi, A.; Trabelsi, K.; Gaidi, M.; Alhazaa, A.; Al-Gawati, M.; El Khakani, M.; Bessais, B. Enhancement of photocatalytic and photoelectrochemical properties of TiO2 nanotubes sensitized by SILAR-Deposited PbS nanoparticles. J. Mater. 2020, 6, 62–69. [Google Scholar] [CrossRef]
- Rtimi, S.; Sanjines, R.; Pulgarin, C.; Houas, A.; Lavanchy, J.-C.; Kiwi, J. Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: Implications of the interfacial charge transfer (IFCT). J. Hazard. Mater. 2013, 260, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Abidi, M.; Hajjaji, A.; Bouzaza, A.; Lamaa, L.; Peruchon, L.; Brochier, C.; Rtimi, S.; Wolbert, D.; Bessais, B.; Assadi, A.A. Modeling of indoor air treatment using an innovative photocatalytic luminous textile: Reactor compactness and mass transfer enhancement. Chem. Eng. J. 2022, 430, 132636. [Google Scholar] [CrossRef]
- Montakhab, E.; Rashchi, F.; Sheibani, S. Modification and photocatalytic activity of open channel TiO2 nanotubes array synthesized by anodization process. Appl. Surf. Sci. 2020, 534, 147581. [Google Scholar] [CrossRef]
- Macak, J.M.; Zlamal, M.; Krysa, J.; Schmuki, P. Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 2007, 3, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Khezami, L.; Lounissi, I.; Hajjaji, A.; Guesmi, A.; Assadi, A.A.; Bessais, B. Synthesis and Characterization of TiO2 Nanotubes (TiO2-NTs) Decorated with Platine Nanoparticles (Pt-NPs): Photocatalytic Performance for Simultaneous Removal of Microorganisms and Volatile Organic Compounds. Materials 2021, 14, 7341. [Google Scholar] [CrossRef]
- Mor, G.K.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Mun, K.-S.; Alvarez, S.D.; Choi, W.-Y.; Sailor, M.J. A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano 2010, 4, 2070–2076. [Google Scholar] [CrossRef] [PubMed]
- Abidi, M.; Hajjaji, A.; Bouzaza, A.; Trablesi, K.; Makhlouf, H.; Rtimi, S.; Assadi, A.; Bessais, B. Simultaneous removal of bacteria and volatile organic compounds on Cu2O-NPs decorated TiO2 nanotubes: Competition effect and kinetic studies. J. Photochem. Photobiol. A 2020, 400, 112722. [Google Scholar] [CrossRef]
- Abidi, M.; Assadi, A.A.; Aouida, S.; Tahraoui, H.; Khezami, L.; Zhang, J.; Amrane, A.; Hajjaji, A. Photocatalytic activity of Cu2O-Loaded TiO2 heterojunction composites for the simultaneous removal of organic pollutants and bacteria in indoor air. Catalysts 2025, 15, 360. [Google Scholar] [CrossRef]
- Son, Y.; Jung, R.; Yoo, J.; Lee, K. Interfacial Charge Transfer Modulation via Phase Junctions and Defect Control in Spaced TiO2 Nanotubes for Enhanced Photoelectrochemical Water Splitting. Sol. RRL 2025, 9, 2500334. [Google Scholar] [CrossRef]
- Ratanatawanate, C.; Xiong, C.; Balkus, K.J., Jr. Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2008, 2, 1682–1688. [Google Scholar] [CrossRef]
- Gao, X.-F.; Sun, W.-T.; Hu, Z.-D.; Ai, G.; Zhang, Y.-L.; Feng, S.; Li, F.; Peng, L.-M. An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. J. Phys. Chem. C 2009, 113, 20481–20485. [Google Scholar] [CrossRef]
- Ka, I.; Ma, D.; El Khakani, M.A. Tailoring the photoluminescence of PbS-nanoparticles layers deposited by means of the pulsed laser ablation technique. J. Nanopart. Res. 2011, 13, 2269–2274. [Google Scholar] [CrossRef]
- Ka, I.; Le Borgne, V.; Fujisawa, K.; Hayashi, T.; Kim, Y.A.; Endo, M.; Ma, D.; El Khakani, M.A. Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids. Sci. Rep. 2016, 6, 20083. [Google Scholar] [CrossRef]
- Ka, I.; Le Borgne, V.; Fujisawa, K.; Hayashi, T.; Kim, Y.A.; Endo, M.; Ma, D.; El Khakani, M.A. PbS-quantum-dots/double-wall-carbon-nanotubes nanohybrid based photodetectors with extremely fast response and high responsivity. Mater. Today Energy 2020, 16, 100378. [Google Scholar] [CrossRef]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Popova, E.; Moskina, A.; Popov, A. Characterization of CdxTeyOz/CdS/ZnO heterostructures synthesized by the SILAR method. Coatings. 2023, 13, 639. [Google Scholar] [CrossRef]
- Raut, V.S. Effect of indium doping on the physical properties of CdSe thin films grown by SILAR method. Interactions 2025, 246, 78. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Zhu, G.; Li, B.; Gou, J.; Cheng, X. Synthesis of PbS/TiO2 nano-tubes photoelectrode and its enhanced visible light driven photocatalytic performance and mechanism for purification of 4-chlorobenzoic acid. Sep. Purif. Technol. 2019, 227, 115697. [Google Scholar] [CrossRef]
- Mazierski, P.; Wilczewska, P.; Lisowski, W.; Klimczuk, T.; Białk-Bielińska, A.; Zaleska-Medynska, A.; Siedlecka, E.M.; Pieczyńska, A. Ti/TiO2 nanotubes sensitized PbS quantum dots as photoelectrodes applied for decomposition of anticancer drugs under simulated solar energy. J. Hazard. Mater. 2022, 421, 126751. [Google Scholar] [CrossRef]
- Ratanatawanate, C.; Tao, Y.; Balkus, K.J., Jr. Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites. J. Phys. Chem. C 2009, 113, 10755–10760. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Gao, R. Preparation of PbS/TiO2 nanotube films for enhanced photoelectrochemical response and cathodic protection performance. Mater. Today Commun. 2024, 41, 110757. [Google Scholar] [CrossRef]
- Zhao, H.; Chaker, M.; Ma, D. Bimodal photoluminescence during the growth of PbS quantum dots. J. Phys. Chem. C 2009, 113, 6497–6504. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, H.; Wu, N.; El Khakani, M.A.; Ma, D. Tuning the charge-transfer property of PbS-quantum dot/TiO2-nanobelt nanohybrids via quantum confinement. J. Phys. Chem. Lett. 2010, 1, 1030–1035. [Google Scholar] [CrossRef]
- Ka, I.; Le Borgne, V.; Ma, D.; El Khakani, M.A. Pulsed laser ablation based direct synthesis of single-wall carbon nanotube/PbS quantum dot nanohybrids exhibiting strong, spectrally wide and fast photoresponse. Adv. Mater. 2012, 24, 6289–6294. [Google Scholar] [CrossRef]
- Fujisawa, K.; Ka, I.; Le Borgne, V.; Kang, C.-S.; Kobayashi, K.; Muramatsu, H.; Hayashi, T.; Kim, Y.A.; Endo, M.; Terrones, M.; et al. Elucidating the local interfacial structure of highly photoresponsive carbon nanotubes/PbS-QDs based nanohybrids grown by pulsed laser deposition. Carbon 2016, 96, 145–152. [Google Scholar] [CrossRef]
- Algethami, F.K.; Trabelsi, K.; Hajjaji, A.; Rabha, M.B.; Khezami, L.; Elamin, M.R.; Bessais, B.; El Khakani, M.A. Photocatalytic activity of silicon nanowires decorated with PbS nanoparticles deposited by pulsed laser deposition for efficient wastewater treatment. Materials 2022, 15, 4970. [Google Scholar] [CrossRef] [PubMed]
- Hajjaji, A.; Jemai, S.; Trabelsi, K.; Kouki, A.; Ben Assaker, I.; Ka, I.; Gaidi, M.; Bessais, B.; El Khakani, M.A. Study of TiO2 nanotubes decorated with PbS nanoparticles elaborated by pulsed laser deposition: Microstructural, optoelectronic and photoelectrochemical properties. J. Mater. Sci. 2019, 30, 20935–20946. [Google Scholar] [CrossRef]
- Shepelin, N.A.; Tehrani, Z.P.; Ohannessian, N.; Schneider, C.W.; Pergolesi, D.; Lippert, T. A practical guide to pulsed laser deposition. Chem. Soc. Rev. 2023, 52, 2294–2321. [Google Scholar] [CrossRef] [PubMed]
- Beatriceveena, T.V.; Prabhu, E.; Jayaraman, V.; Gnanasekar, K.I. X-ray photoelectron and Hall studies on nanostructured thin films of PbS grown by pulsed laser deposition. Mater. Lett. 2018, 238, 324–327. [Google Scholar] [CrossRef]
- Gezgin, S.Y.; Kepceoğlu, A.; Gündoğdu, Y.; Zongo, S.; Zawadzka, A.; Kiliç, H.Ş.; Sahraoui, B. Effect of Ar Gas Pressure on LSPR Property of Au Nanoparticles: Comparison of Experimental and Theoretical Studies. Nanomaterials 2020, 10, 1071. [Google Scholar] [CrossRef]
- Fazio, E.; Neri, F.; Ossi, P.M.; Santo, N.; Trusso, S. Growth process of nanostructured silver films pulsed laser ablated in high-pressure inert gas. Appl. Surf. Sci. 2009, 255, 9676–9679. [Google Scholar] [CrossRef]
- Rebhi, A.; Hajjaji, A.; Leblanc-Lavoie, J.; Aouida, S.; Gaidi, M.; Bessais, B.; El Khakani, M.A. Effect of the Helium Background Gas Pressure on the Structural and Optoelectronic Properties of Pulsed-Laser-Deposited PbS Thin Films. Nanomaterials 2021, 11, 1254. [Google Scholar] [CrossRef] [PubMed]
- Rahna, N.; Kalarivalappil, V.; Nageri, M.; Pillai, S.C.; Hinder, S.J.; Kumar, V.; Vijayan, B.K. Stability studies of PbS sensitised TiO2 nanotube arrays for visible light photocatalytic applications by X-ray photoelectron spectroscopy (XPS). Mater. Sci. Semicond. Process. 2016, 42, 303–310. [Google Scholar] [CrossRef]
- Noda, Y.; Masumoto, K.; Ohba, S.; Saito, Y.; Toriumi, K.; Iwata, Y.; Shibuya, I. Temperature dependence of atomic thermal parameters of lead chalcogenides, PbS, PbSe and PbTe. Acta Crystallogr. C 1987, 43, 1443–1445. [Google Scholar]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Ryu, Y.R.; Zhu, S.; Han, S.W.; White, H.W. Application of pulsed-laser deposition technique for cleaning a GaAs surface and for epitaxial ZnSe film growth. J. Vac. Sci. Technol. A 1998, 16, 3058–3063. [Google Scholar] [CrossRef]
- Almeida, D.B.; Rodriguez, E.; Agouram, S.; Moreira, R.S.; Cesar, C.L.; Jimenez, E.; Barbosa, L.C.; Träger, F.; Dubowski, J.J.; Geohegan, D.B. Influence of the growing parameters on the size distribution of PbTe nanoparticles produced by laser ablation under inert gas atmosphere. In Synthesis and Photonics of Nanoscale Materials IX; SPIE: Bellingham, WA, USA, 2012; Volume 8245, p. 82450K. [Google Scholar]
- Wang, X.; Blackford, M.; Prince, K.; Caruso, R.A. Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 2012, 4, 476–482. [Google Scholar] [CrossRef]
- Zhu, Y.-F.; Xu, L.; Hu, J.; Zhang, J.; Du, R.-G.; Lin, C.-J. Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel. Electrochim. Acta 2014, 121, 361–368. [Google Scholar] [CrossRef]
- Ahmadi, A.; Wu, T. Inactivation of E. coli using a novel TiO2 nanotube electrode. Environ. Sci. Water Res. Technol. 2017, 3, 534–545. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebhi, A.; Choubani, K.; Hajjaji, A.; Ben Rabha, M.; Almeshaal, M.A.; Bessais, B.; Gaidi, M.; El Khakani, M.A. Boosting the Photocatalytic Behavior of PbS/TiO2 Nanocomposites via the Pulsed Laser Deposition of PbS Nanoparticles onto TiO2 Nanotube Arrays Under Various Helium Background Pressures. Crystals 2025, 15, 783. https://doi.org/10.3390/cryst15090783
Rebhi A, Choubani K, Hajjaji A, Ben Rabha M, Almeshaal MA, Bessais B, Gaidi M, El Khakani MA. Boosting the Photocatalytic Behavior of PbS/TiO2 Nanocomposites via the Pulsed Laser Deposition of PbS Nanoparticles onto TiO2 Nanotube Arrays Under Various Helium Background Pressures. Crystals. 2025; 15(9):783. https://doi.org/10.3390/cryst15090783
Chicago/Turabian StyleRebhi, Ameni, Karim Choubani, Anouar Hajjaji, Mohamed Ben Rabha, Mohammed A. Almeshaal, Brahim Bessais, Mounir Gaidi, and My Ali El Khakani. 2025. "Boosting the Photocatalytic Behavior of PbS/TiO2 Nanocomposites via the Pulsed Laser Deposition of PbS Nanoparticles onto TiO2 Nanotube Arrays Under Various Helium Background Pressures" Crystals 15, no. 9: 783. https://doi.org/10.3390/cryst15090783
APA StyleRebhi, A., Choubani, K., Hajjaji, A., Ben Rabha, M., Almeshaal, M. A., Bessais, B., Gaidi, M., & El Khakani, M. A. (2025). Boosting the Photocatalytic Behavior of PbS/TiO2 Nanocomposites via the Pulsed Laser Deposition of PbS Nanoparticles onto TiO2 Nanotube Arrays Under Various Helium Background Pressures. Crystals, 15(9), 783. https://doi.org/10.3390/cryst15090783