Isosymmetric Phase Transitions in Crystals: From Subtle Rearrangements to Functional Properties
Abstract
1. Introduction
2. Isosymmetric Phase Transition
3. Methods Used to Analyze IPTs
3.1. X-Ray Diffraction
3.1.1. Powder X-Ray Diffraction
3.1.2. Single Crystal X-Ray Diffraction
3.2. Spectroscopic Methods
3.2.1. Raman Spectroscopy
3.2.2. Fourier-Transform Infrared Spectroscopy
3.3. Differential Scanning Calorimetry
3.4. Computational Methods
3.4.1. Density Functional Theory
3.4.2. Molecular Dynamics Simulations
3.4.3. Crystal Structure Prediction
4. Factors Causing the Phenomenon of IPT
4.1. Temperature
4.2. Pressure
5. Overview of Documented IPT Cases in Crystalline Materials
5.1. Low-Molecular-Weight Organic Compounds
5.1.1. Phenolic Compounds
- Resorcinol
- Hydroquinone–Formic Acid Clathrate
5.1.2. Amino Acids and Their Derivatives
- L-Histidine
- DL-Cysteine
- L-Serine
- α-Glycylglycine
5.1.3. Amides, Amidines, and Nitrogen-Containing Heterocyclic Compounds
- N-Isopropylpropionamide
- Biurea
- 1,4-Diazoniabicyclo[2.2.2]octane-1-acetate-4-acetic Acid Chloride Trihydrate
- 2-(3,5-Bis(trifluoromethyl)phenyl)-4,5-dihydro-1H-imidazole
5.1.4. Functional Organic Compounds for Electronic and Ionic Applications
- Rubrene
- BTBT-C4OH
- 2-Nitroanilinium Bisulphate
- 4-Ethylanilinium Hydrogen (2R,3R)-Tartrate
- Pyridinium-3-Carboxylic Acid Perchlorate
5.1.5. Active Pharmaceutical Ingredients
- Dapsone
- Chlorothiazide
- Ibuprofen Lysine Salt
- R-Cinacalcet Hydrochloride
- Estradiol 17β Valerate
5.1.6. Organic Radicals
- Blatter’s Radical
5.2. Inorganic Compounds and Metal Complexes
5.2.1. Simple Salts and Oxides
- Sulfamic Acid
- Ammonium Bicarbonate
- Sodium Oxalate
- Caesium Hydroxide
- Cobalt Iodate
- Zinc Iodate
- Magnesium Aluminum Phosphate Oxide
- Dabcodiium Chlorochromate Chloride
5.2.2. Inorganic Fluorides
- Lead Fluoride
- Sodium Manganese Fluoride
5.2.3. Coordination Complexes and Ionic Compounds
- Copper–Dicyanoaurate Complexes
- Hexathiocyanate Thulium(III) Anions
- Triethylbenzylammonium Perchlorate
5.3. Silicate Minerals and Orthopyroxenes
- Paracelsian
- Orthoenstatite
- Orthopyroxene
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADXRD | Angle-Dispersive X-ray Diffraction |
ADP | Atomic Displacement Parameter |
aiMD | Ab Initio Molecular Dynamics |
CN | Coordination Number |
CSP | Crystal Structure Prediction |
DFT | Density Functional Theory |
DSC | Differential Scanning Calorimetry |
DTA | Differential Thermal Analysis |
EDX | Energy-Dispersive X-ray Spectroscopy |
FT-IR | Fourier-Transform Infrared Spectroscopy |
HRXRD | High-Resolution X-ray Diffraction |
IPT | Isosymmetric Phase Transition |
IR | Infrared Spectroscopy |
MD | Molecular Dynamics |
ND | Neutron Diffraction |
ssNMR | Solid-State Nuclear Magnetic Resonance |
NPD | Neutron Powder Diffraction |
NTE | Negative Thermal Expansion |
PC | Plastic Crystalline |
PFY-XAS | Partial Fluorescence Yield–X-ray Absorption Spectroscopy |
PTE | Positive Thermal Expansion |
PL | Photoluminescence |
PXRD | Powder X-ray Diffraction |
SCXRD | Single-Crystal X-ray Diffraction |
TEM | Transmission Electron Microscopy |
TLS | Translation–Liberation–Screw |
TGA | Thermogravimetric Analysis |
UV-vis | Ultraviolet–Visible Absorption Spectroscopy |
XRD | X-ray Diffraction |
XRPD | X-ray Powder Diffraction |
ZTE | Zero Thermal Expansion |
References
- Rao, R.; Sakuntala, T.; Godwal, B.K. Evidence for High-Pressure Polymorphism in Resorcinol. Phys. Rev. B 2002, 65, 054108. [Google Scholar] [CrossRef]
- Szeleszczuk, Ł.; Mazurek, A.H.; Milcarz, K.; Napiórkowska, E.; Pisklak, D.M. Can We Predict the Isosymmetric Phase Transition? Application of DFT Calculations to Study the Pressure Induced Transformation of Chlorothiazide. Int. J. Mol. Sci. 2021, 22, 10100. [Google Scholar] [CrossRef]
- Bull, C.L.; Funnell, N.P.; Ridley, C.J.; Pulham, C.R.; Coster, P.L.; Tellam, J.P.; Marshall, W.G. Pressure-Induced Isosymmetric Phase Transition in Biurea. CrystEngComm 2019, 21, 5872–5881. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, L.; Yu, S.; Li, Z.; Li, Y. Biaxial Hard Compression, Anisotropic Elastic Property, and Pressure-Induced Isosymmetric Phase Transition in Ammonium Bicarbonate. J. Phys. Chem. C 2022, 127, 831–841. [Google Scholar] [CrossRef]
- Kumar, H.; Tripathi, A.; Tripathi, S. Unambiguous Evidence of an Isosymmetric Phase Transition in Rare Earth Orthoferrites (RFeO3) Driven by Interaction of R Cation with O Anions in First and Second Coordination Shells. J. Phys. D Appl. Phys. 2024, 58, 085303. [Google Scholar] [CrossRef]
- Erkartal, M. Giant Negative Linear Compressibility, Isosymmetric Phase Transition, and Breathing Effect in a 3D Covalent Organic Framework. J. Phys. Chem. C 2023, 128, 588–596. [Google Scholar] [CrossRef]
- Christy, A.G. Isosymmetric Structural Phase Transitions: Phenomenology and Examples. Acta Crystallogr. B Struct. Sci. 1995, 51, 753–757. [Google Scholar] [CrossRef]
- Miyake, A.; Ohi, S. Isosymmetric Phase Transition in Orthopyroxene at High Temperature. J. Crystallogr. Soc. Jpn. 2011, 53, 36–41. [Google Scholar] [CrossRef][Green Version]
- Miyake, A.; Shimobayashi, N.; Kitamura, M. Isosymmetric Structural Phase Transition of Orthoenstatite: Molecular Dynamics Simulation. Am. Mineral. 2004, 89, 1667–1672. [Google Scholar] [CrossRef]
- Li, Q.; Li, S.; Wang, K.; Li, X.; Liu, J.; Liu, B.; Zou, G.; Zou, B. Pressure-Induced Isosymmetric Phase Transition in Sulfamic Acid: A Combined Raman and x-Ray Diffraction Study. J. Chem. Phys. 2013, 138, 214505. [Google Scholar] [CrossRef]
- Erkartal, M. Unveiling the Multifaceted Properties of a 3d Covalent-Organic Framework: Pressure-Induced Phase Transition, Negative Linear Compressibility and Auxeticity. Comput. Mater. Sci. 2023, 227, 112275. [Google Scholar] [CrossRef]
- Novelli, G.; Maynard-Casely, H.E.; McIntyre, G.J.; Warren, M.R.; Parsons, S. Effect of High Pressure on the Crystal Structures of Polymorphs of L-Histidine. Cryst. Growth Des. 2020, 20, 7788–7804. [Google Scholar] [CrossRef]
- Ben Gzaiel, M.; Oueslati, A.; Chaabane, I.; Bulou, A.; Hlel, F.; Gargouri, M. Using Raman Spectroscopy to Understand the Origin of the Phase Transitions Observed in [(C3H7)4N]2Zn2Cl6 Compound. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 145, 223–234. [Google Scholar] [CrossRef]
- Terzidou, A.G.V.; Sorogas, N.; Pinakidou, F.; Paloura, E.C.; Arvanitidis, J. The Pressure-Induced Structural Phase Transition of Fluorene Studied by Raman Spectroscopy. Vib. Spectrosc. 2021, 115, 103272. [Google Scholar] [CrossRef]
- Gerasimova, Y.; Laptash, N.; Krylov, A.; Vonog, V.; Vtyurin, A. Structural Phase Transition in (NH4)3GeF7–Raman Spectroscopy Data. Crystals 2021, 11, 506. [Google Scholar] [CrossRef]
- Husni, E.; Hamidi, D.; Pavvellin, D.; Hidayah, H.; Syafri, S. Metabolite Profiling, Antioxidant, and in Vitro Wound Healing Activities of Citrus Medica L. and Citrus x Microcarpa Bunge Peels and Leaves Essential Oils. Prospect. Pharm. Sci. 2024, 22, 122–130. [Google Scholar] [CrossRef]
- Tandon, P.; Förster, G.; Neubert, R.; Wartewig, S. Phase Transitions in Oleic Acid as Studied by X-Ray Diffraction and FT-Raman Spectroscopy. J. Mol. Struct. 2000, 524, 201–215. [Google Scholar] [CrossRef]
- Schick, C.; Lexa, D.; Leibowitz, L. Differential Scanning Calorimetry and Differential Thermal Analysis. In Characterization of Materials; Kaufmann, E.N., Ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 1–13. ISBN 978-0-471-26882-6. [Google Scholar]
- Charles, N.; Rondinelli, J.M. Microscopic Origin of Pressure-Induced Isosymmetric Transitions in Fluoromanganate Cryolites. Phys. Rev. B 2014, 90, 094114. [Google Scholar] [CrossRef]
- Islamoğlu, F. Molecular Docking, Bioactivity, Adme, Toxicity Risks, and Quantum Mechanical Parameters of Some 1,2-Dihydroquinoline Derivatives Were Calculated Theoretically for Investigation of Its Use as a Pharmaceutical Active Ingredient in the Treatment of Multiple Sclerosis (MS). Prospect. Pharm. Sci. 2024, 22, 168–187. [Google Scholar] [CrossRef]
- Casadei, M.; Ren, X.; Rinke, P.; Rubio, A.; Scheffler, M. Density-Functional Theory for f -Electron Systems: The α − γ Phase Transition in Cerium. Phys. Rev. Lett. 2012, 109, 146402. [Google Scholar] [CrossRef] [PubMed]
- Kawano, J.; Miyake, A.; Shimobayashi, N.; Kitamura, M. Molecular Dynamics Simulation of the Rotational Order–Disorder Phase Transition in Calcite. J. Phys. Condens. Matter 2009, 21, 095406. [Google Scholar] [CrossRef]
- Singireddy, A.R.; Pedireddi, S.R. Advances in Lopinavir Formulations: Strategies to Overcome Solubility, Bioavailability, and Stability Challenges. Prospect. Pharm. Sci. 2024, 22, 105–121. [Google Scholar] [CrossRef]
- Ma, Y.; Oganov, A.R.; Glass, C.W. Structure of the Metallic ζ -Phase of Oxygen and Isosymmetric Nature of the ε − ζ Phase Transition: Ab Initio Simulations. Phys. Rev. B 2007, 76, 064101. [Google Scholar] [CrossRef]
- Ning, J.; Zhang, X.; Zhang, S.; Sun, N.; Wang, L.; Ma, M.; Liu, R. Pressure-Induced Pseudoatom Bonding Collapse and Isosymmetric Phase Transition in Zr2Cu: First-Principles Predictions. J. Chem. Phys. 2013, 139, 234504. [Google Scholar] [CrossRef]
- Wu, D.-H.; Jin, L. Temperature-Induced Isosymmetric Reversible Structural Phase Transition in Triethylbenzylammonium Perchlorate. Inorg. Chem. Commun. 2013, 29, 151–156. [Google Scholar] [CrossRef]
- Chen, L.-Z.; Huang, D.-D.; Pan, Q.-J.; Zhang, L. Temperature-Induced Isosymmetric Reversible Structural Phase Transition in [Cl2Cd(Dabco-CH2Cl)]2·(μ-Cl)2. J. Mol. Struct. 2014, 1078, 68–73. [Google Scholar] [CrossRef]
- Quesada-Cabrera, R.; Filinchuk, Y.; McMillan, P.F.; Nies, E.; Dmitriev, V.; Meersman, F. Exploring the Pressure–Temperature Behaviour of Crystalline and Plastic Crystalline Phases of N-Isopropylpropionamide. CrystEngComm 2015, 17, 2562–2568. [Google Scholar] [CrossRef]
- Stan, C.V.; Dutta, R.; White, C.E.; Prakapenka, V.; Duffy, T.S. High-Pressure Polymorphism of PbF2 to 75 GPa. Phys. Rev. B 2016, 94, 024104. [Google Scholar] [CrossRef]
- Haines, J.; Léger, J.M.; Schulte, O. High-Pressure Isosymmetric Phase Transition in Orthorhombic Lead Fluoride. Phys. Rev. B 1998, 57, 7551–7555. [Google Scholar] [CrossRef]
- Goryainov, S.V.; Boldyreva, E.V.; Smirnov, M.B.; Ahsbahs, H.; Chernyshev, V.V.; Weber, H.-P. Isosymmetric Reversible Pressure-Induced Phase Transition in Sodium Oxalate at 3.8 GPa. Dokl. Phys. Chem. 2003, 390, 154–157. [Google Scholar] [CrossRef]
- Gorelova, L.A.; Pakhomova, A.S.; Krivovichev, S.V.; Dubrovinsky, L.S.; Kasatkin, A.V. High Pressure Phase Transitions of Paracelsian BaAl2Si2O8. Sci. Rep. 2019, 9, 12652. [Google Scholar] [CrossRef] [PubMed]
- Minkov, V.S.; Tumanov, N.A.; Cabrera, R.Q.; Boldyreva, E.V. Low Temperature/High Pressure Polymorphism in Dl-Cysteine. CrystEngComm 2010, 12, 2551. [Google Scholar] [CrossRef]
- Datchi, F.; Ninet, S.; Gauthier, M.; Saitta, A.M.; Canny, B.; Decremps, F. Solid Ammonia at High Pressure: A Single-Crystal x-Ray Diffraction Study to 123 GPa. Phys. Rev. B 2006, 73, 174111. [Google Scholar] [CrossRef]
- Bergantin, S.; Moret, M.; Buth, G.; Fabbiani, F.P.A. Pressure-Induced Conformational Change in Organic Semiconductors: Triggering a Reversible Phase Transition in Rubrene. J. Phys. Chem. C 2014, 118, 13476–13483. [Google Scholar] [CrossRef]
- Allan, D.R.; Nelmes, R.J. The Structural Pressure Dependence of Potassium Titanyl Phosphate (KTP) to 8 GPa. J. Phys. Condens. Matter 1996, 8, 2337–2363. [Google Scholar] [CrossRef]
- Priola, E.; Curetti, N.; Marabello, D.; Andreo, J.; Giordana, A.; Andreo, L.; Benna, P.; Freire, P.T.C.; Benzi, P.; Operti, L.; et al. Crystal Engineering of Aurophilic Supramolecular Architectures and Coordination Polymers Based on Butterfly-like Copper–Dicyanoaurate Complexes: Vapochromism, P–T Behaviour and Multi-Metallic Cocrystal Formation. CrystEngComm 2022, 24, 2336–2348. [Google Scholar] [CrossRef]
- Eikeland, E.; Thomsen, M.K.; Madsen, S.R.; Overgaard, J.; Spackman, M.A.; Iversen, B.B. Structural Collapse of the Hydroquinone–Formic Acid Clathrate: A Pressure-Medium-Dependent Phase Transition. Chem. Eur. J. 2016, 22, 4061–4069. [Google Scholar] [CrossRef]
- Han, Z.; Gu, Y.; Zheng, X.; Liu, J.-X.; Zhang, G.-J.; Liang, Y. Ultrahigh Elasticity and Anomalous Softening of α-Ag2S under Pressure. Chem. Phys. Lett. 2022, 802, 139801. [Google Scholar] [CrossRef]
- Yoshikane, N.; Matsui, K.; Nakagawa, T.; Yamaoka, H.; Hiraoka, N.; Ishii, H.; Arvanitidis, J.; Prassides, K. Isosymmetric Lattice Collapse in Mixed-Valence Rare-Earth Fullerides at High Pressure—Coupling of Lattice and Electronic Degrees of Freedom. J. Phys. Chem. C 2023, 127, 10375–10383. [Google Scholar] [CrossRef]
- Liang, A.; Popescu, C.; Manjon, F.J.; Turnbull, R.; Bandiello, E.; Rodriguez-Hernandez, P.; Muñoz, A.; Yousef, I.; Hebboul, Z.; Errandonea, D. Pressure-Driven Symmetry-Preserving Phase Transitions in Co(IO3)2. J. Phys. Chem. C 2021, 125, 17448–17461. [Google Scholar] [CrossRef]
- Mellaerts, S.; Seo, J.W.; Afanas’ev, V.; Houssa, M.; Locquet, J.-P. Origin of Supertetragonality in BaTiO3. Phys. Rev. Mater. 2022, 6, 064410. [Google Scholar] [CrossRef]
- Liang, A.; Popescu, C.; Manjon, F.J.; Rodriguez-Hernandez, P.; Muñoz, A.; Hebboul, Z.; Errandonea, D. Structural and Vibrational Study of Zn(IO3)2 Combining High-Pressure Experiments and Density-Functional Theory. Phys. Rev. B 2021, 103, 054102. [Google Scholar] [CrossRef]
- Hermann, A. High-Pressure Phase Transitions in Rubidium and Caesium Hydroxides. Phys. Chem. Chem. Phys. 2016, 18, 16527–16534. [Google Scholar] [CrossRef]
- Clarke, S.M.; Steele, B.A.; Kroonblawd, M.P.; Zhang, D.; Kuo, I.-F.W.; Stavrou, E. An Isosymmetric High-Pressure Phase Transition in α-Glycylglycine: A Combined Experimental and Theoretical Study. J. Phys. Chem. B 2020, 124, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Ahmad, A.S.; Zhao, J.; Song, G.; Zhou, X.; Ji, J.; Zhang, W.; Han, Z.; Liu, J.; Stahl, K.; et al. Isosymmetric Phase Transitions, Ultrahigh Ductility, and Topological Nodal Lines in α−Ag2S. Phys. Rev. B 2020, 102, 140101. [Google Scholar] [CrossRef]
- Boldyreva, E.V.; Sowa, H.; Seryotkin, Y.V.; Drebushchak, T.N.; Ahsbahs, H.; Chernyshev, V.; Dmitriev, V. Pressure-Induced Phase Transitions in Crystalline l-Serine Studied by Single-Crystal and High-Resolution Powder X-Ray Diffraction. Chem. Phys. Lett. 2006, 429, 474–478. [Google Scholar] [CrossRef]
- Carlson, S.; Xu, Y.; Hålenius, U.; Norrestam, R. A Reversible, Isosymmetric, High-Pressure Phase Transition in Na3MnF6. Inorg. Chem. 1998, 37, 1486–1492. [Google Scholar] [CrossRef]
- Broadhurst, E.T.; Wilson, C.J.G.; Zissimou, G.A.; Nudelman, F.; Constantinides, C.P.; Koutentis, P.A.; Parsons, S. A First-Order Phase Transition in Blatter’s Radical at High Pressure. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2022, 78, 107–116. [Google Scholar] [CrossRef]
- Ye, H.-Y.; Cai, H.-L.; Ge, J.-Z.; Xiong, R.-G. Isosymmetric Temperature-Triggered Structural Phase Transition of Dabcodiium Chlorochromate Chloride. Inorg. Chem. Commun. 2012, 17, 159–162. [Google Scholar] [CrossRef]
- Wu, D.-H.; Ge, J.-Z.; Cai, H.-L.; Zhang, W.; Xiong, R.-G. Organic Salt of Hydrogen L-Tartaric Acid: A Novel Wide-Temperature-Range Ferroelectrics with a Reversible Phase Transition. CrystEngComm 2011, 13, 319–324. [Google Scholar] [CrossRef]
- Vladiskovic, C.; Masciocchi, N. Reversibly Changing a Painkiller Structure: A Hot Topic for a Cold Case—Ibuprofen Lysine Salt. J. Pharm. Biomed. Anal. 2015, 107, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Rejnhardt, P.; Drozd, M.; Daszkiewicz, M. Phase Transition in 2-Nitroanilinium Bisulphate. Graph-Set Analysis, Spectroscopic and Theoretical Studies. J. Mol. Struct. 2020, 1206, 127772. [Google Scholar] [CrossRef]
- Braun, D.E.; Krüger, H.; Kahlenberg, V.; Griesser, U.J. Molecular Level Understanding of the Reversible Phase Transformation between Forms III and II of Dapsone. Cryst. Growth Des. 2017, 17, 5054–5060. [Google Scholar] [CrossRef]
- Braun, D.E.; Többens, D.M.; Kahlenberg, V.; Ludescher, J.; Griesser, U.J. Structural and Thermodynamic Features of Crystal Polymorphs of R-Cinacalcet Hydrochloride. Cryst. Growth Des. 2008, 8, 4109–4119. [Google Scholar] [CrossRef]
- Ye, H.-Y.; Chen, L.-Z.; Xiong, R.-G. Reversible Phase Transition of Pyridinium-3-Carboxylic Acid Perchlorate. Acta Crystallogr. B Struct. Sci. 2010, 66, 387–395. [Google Scholar] [CrossRef]
- Tang, Y.Q.; López-Cartes, C.; Avilés, M.A.; Córdoba, J.M. Isosymmetric Structural Phase Transition of the Orthorhombic Lanthanum Gallate Structure as a Function of Temperature Determined by Rietveld Analysis. CrystEngComm 2018, 20, 5562–5569. [Google Scholar] [CrossRef]
- Gibbs, A.S.; Knight, K.S.; Lightfoot, P. High-Temperature Phase Transitions of Hexagonal YMnO3. Phys. Rev. B 2011, 83, 094111. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, S.; Tu, B.; Jin, S.; Huq, A.; Persson, J.; Gao, H.; Ouyang, D.; He, Z.; Yao, D.-X.; et al. High-Temperature Magnetism and Crystallography of a YCrO3 Single Crystal. Phys. Rev. B 2020, 101, 014114, Erratum in Phys. Rev. B 2020, 102, 019901. [Google Scholar] [CrossRef]
- Ellena, J.; De Paula, K.; De Melo, C.C.; Da Silva, C.C.P.; Bezerra, B.P.; Venâncio, T.; Ayala, A.P. Temperature-Driven Isosymmetric Reversible Phase Transition of the Hormone Estradiol 17β Valerate. Cryst. Growth Des. 2014, 14, 5700–5709. [Google Scholar] [CrossRef]
- Farmer, J.M.; Boatner, L.A.; Chakoumakos, B.C.; Rawn, C.J.; Mandrus, D.; Jin, R.; Bryan, J.C. Polymorphism, Phase Transitions, and Thermal Expansion of K3Lu(PO4)2. J. Alloys Compd. 2014, 588, 182–189. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, W.-Q.; Ye, H.-Y.; Fu, D.-W.; Xiong, R.-G. Reversible Phase Transition of 1,4-Diazoniabicyclo [2.2.2]Octane-1-Acetate-4-Acetic Acid Chloride Trihydrate. Cryst. Growth Des. 2013, 13, 4025–4030. [Google Scholar] [CrossRef]
- Vikas; Negi, L.; Munshi, P. Dynamic Order–Disorder Reversible Phase Transition and Anisotropic Thermal Expansions in a Single-Component Organic Molecular Crystal. Cryst. Growth Des. 2024, 24, 2533–2541. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Li, W.; Mao, D.; Benmore, C.J.; Evangelista, I.; Xing, H.; Li, Q.; Wang, F.; Sivaraman, G.; et al. Structural Phase Transitions between Layered Indium Selenide for Integrated Photonic Memory. Adv. Mater. 2022, 34, 2108261. [Google Scholar] [CrossRef]
- Dong, X.-X.; Song, N.; Huang, B.; Tan, Y.-H.; Tang, Y.-Z.; Wei, W.-J.; Li, Y.-K.; Shu, Q. Reversible Structural Phase Transition, Dielectric Switches and Photoluminescence Based on Hexathiocyanate Thulium(III) Anions. Inorganica Chim. Acta 2021, 515, 120051. [Google Scholar] [CrossRef]
- Ohi, S.; Miyake, A.; Shimobayashi, N.; Yashima, M.; Kitamura, M. An Isosymmetric Phase Transition of Orthopyroxene Found by High-Temperature X-Ray Diffraction. Am. Mineral. 2008, 93, 1682–1685. [Google Scholar] [CrossRef]
- Ford, S.J.; Delamore, O.J.; Evans, J.S.O.; McIntyre, G.J.; Johnson, M.R.; Radosavljević Evans, I. Giant Deuteron Migration During the Isosymmetric Phase Transition in Deuterated 3,5-Pyridinedicarboxylic Acid. Chem. Eur. J. 2011, 17, 14942–14951. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, D.G.; Roche, G.H.; Moreau, J.J.E.; Dautel, O.J.; Van Der Lee, A. A Positive to Negative Uniaxial Thermal Expansion Crossover in an Organic Benzothienobenzothiophene Structure. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2020, 76, 661–673. [Google Scholar] [CrossRef]
- Pandey, J.; Prajapati, P.; Tandon, P.; Sinha, K.; Ayala, A.P.; Ellena, J. Vibrational and Conformational Analysis of Structural Phase Transition in Estradiol 17β Valerate with Temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 263, 120219. [Google Scholar] [CrossRef]
- Arvanitidis, J.; Papagelis, K.; Margadonna, S.; Prassides, K.; Fitch, A.N. Temperature-Induced Valence Transition and Associated Lattice Collapse in Samarium Fulleride. Nature 2003, 425, 599–602. [Google Scholar] [CrossRef]
- Ellemann-Olesen, R. A High-Temperature Diffraction Study of the Solid Solution CaTiOSiO4-CaTiOGeO4. Am. Mineral. 2005, 90, 1325–1334. [Google Scholar] [CrossRef]
- Biryukov, Y.P.; Bubnova, R.S.; Krzhizhanovskaya, M.G.; Filatov, S.K.; Povolotskiy, A.V.; Ugolkov, V.L. Thermal Behavior of Polymorphic Modifications of LuBO3. Solid State Sci. 2020, 99, 106061. [Google Scholar] [CrossRef]
- Schmid-Beurmann, P.; Brunet, F.; Kahlenberg, V.; Dachs, E. Polymorphism and Thermochemistry of MgAlPO4O, a Product of Lazulite Breakdown at High Temperature. Eur. J. Mineral. 2007, 19, 159–172. [Google Scholar] [CrossRef]
- Safari, F.; Katrusiak, A. High-Pressure Polymorphs Nucleated and Stabilized by Rational Doping under Ambient Conditions. J. Phys. Chem. C 2021, 125, 23501–23509. [Google Scholar] [CrossRef]
- Safari, F.; Olejniczak, A.; Katrusiak, A. Pressure-Dependent Crystallization Preference of Resorcinol Polymorphs. Cryst. Growth Des. 2019, 19, 5629–5635. [Google Scholar] [CrossRef]
- Liang, A.; Rahman, S.; Rodriguez-Hernandez, P.; Muñoz, A.; Manjón, F.J.; Nenert, G.; Errandonea, D. High-Pressure Raman Study of Fe(IO3)3: Soft-Mode Behavior Driven by Coordination Changes of Iodine Atoms. J. Phys. Chem. C 2020, 124, 21329–21337. [Google Scholar] [CrossRef]
- Liang, A.; Rahman, S.; Saqib, H.; Rodriguez-Hernandez, P.; Muñoz, A.; Nénert, G.; Yousef, I.; Popescu, C.; Errandonea, D. First-Order Isostructural Phase Transition Induced by High Pressure in Fe(IO3)3. J. Phys. Chem. C 2020, 124, 8669–8679. [Google Scholar] [CrossRef]
- Dorfman, S.M.; Jiang, F.; Mao, Z.; Kubo, A.; Meng, Y.; Prakapenka, V.B.; Duffy, T.S. Phase Transitions and Equations of State of Alkaline Earth Fluorides CaF2, SrF2, and BaF2 to Mbar Pressures. Phys. Rev. B 2010, 81, 174121. [Google Scholar] [CrossRef]
- Song, H.X.; Liu, L.; Geng, H.Y.; Wu, Q. First-Principle Study on Structural and Electronic Properties of CeO2 and ThO2 under High Pressures. Phys. Rev. B 2013, 87, 184103. [Google Scholar] [CrossRef]
Name | Pressure Range | Transition Range | Space Group | System | SCXRD | Other Methods | Year | References |
---|---|---|---|---|---|---|---|---|
Resorcinol (1,3-Dihydroxybenzene) | ambient up to 14.5 GPa | 0.5 GPa (α to β) and 5.6 GPa (to γ) | Pna21 | Orthorhombic | N | Raman Spectroscopy, PL | 2002 | [1] |
Sulfamic acid | ambient up to 20.1 GPa | 10.2 GPa–12.7 GPa | Pbca | Orthorhombic | N | ADXRD, Raman Spectroscopy | 2013 | [10] |
L-Histidine polymorphs | ambient up to 6.60 GPa (form I), ambient up to 6.85 GPa (form II) | 4.5 GPa (form I), 3.1 GPa (form II) | P21 (form I) P212121 (form II) | Orthorhombic (form I), Monoclinic (form II) | Y | PXRD, Raman Spectroscopy | 2020 | [12] |
N-isopropylpropionamide | ambient up to 10 GPa | 4 GPa | P21/a | Monoclinic | Y | DTA | 2015 | [28] |
Lead Fluoride | ambient up to 75 GPa | 10–22 GPa | Pnma | Orthorhombic | N | ADXRD, DFT Calculations | 2016 | [29] |
Lead Fluoride | ambient up to 28 GPa | 10 GPa, 9.8–12.9 GPa | Pnam | Orthorhombic | N | ADXRD, Raman Spectroscopy | 1998 | [30] |
Sodium Oxalate | ambient up to 8 GPa | 3.8 GPa | P21/c | Monoclinic | N | HRXRD, Raman Spectroscopy | 2003 | [31] |
Paracelsian | ambient up to 32 GPa | 3–6 GPa | P21/c (I, II), Pna21 (III), Pn (IV) | Monoclinic (I, II, IV), Orthorhombic (III) | Y | DFT Calculations | 2019 | [32] |
DL-Cysteine | ambient up to 7.90 GPa | 0.1 GPa, 1.55 GPa and 6.20 GPa | P21/a | Monoclinic | N | HRXRD, Raman Spectroscopy | 2010 | [33] |
Solid Ammonia | 4 GPa–123 GPa | 12 GPa | P212121 (for Phase IV and the phase above 12 GPa) | Orthorhombic | Y | Raman Spectroscopy, ND (for ND3) | 2006 | [34] |
Rubrene (5,6,11,12-Tetraphenyl-tetracene) | ambient up to 7.2 GPa | 7.1 GPa | P-1 | Triclinic | Y | Hirshfeld Surface Analysis; PIXEL method for lattice and intermolecular interaction energy calculations | 2014 | [35] |
Biurea | 0.01 GPa–3.89 GPa | 0.6 GPa–1.5 GPa | C2/c | Monoclinic | N | NPD, Raman Spectroscopy, DFT Calculations, Rietveld Refinement | 2019 | [3] |
Potassium Titanyl Phosphate (KTP) | 0.2 GPa–8.2 GPa | 5.8 GPa | Pna21 | Orthorhombic | Y | High-Raman Scattering | 1996 | [36] |
Copper–Dicyanoaurate Complexes | ambient up to 3.6 GPa | 1.2 GPa | P21/c | Monoclinic | Y | Raman Spectroscopy, IR Spectroscopy, UV-vis Absorption Spectroscopy | 2022 | [37] |
Chlorothiazide | 0 GPa–6.20 GPa | 4.2 GPa | P21/c | Monoclinic | Y | DFT calculations, aiMD Simulations | 2021 | [2] |
Hydroquinone–Formic Acid Clathrate | ambient up to 10.2 GPa | 4.25 GPa | R-3 | Trigonal | Y | Raman Spectroscopy, DSC, Energy Framework Calculations | 2016 | [38] |
Ammonium Bicarbonate | ambient up to 3.4 GPa | 2 GPa | Pccn | Orthorhombic | N | ADXRD, DFT calculations, Raman Spectroscopy | 2023 | [4] |
α-Silver Sulfide | ambient up to 32 GPa | 7.5 GPa and 15 GPa | P21/c | Monoclinic | N | DFT Calculations, XRD | 2022 | [39] |
3D Covalent-Organic Framework (NPN-1) | 0 GPa–5 GPa | 0.14 GPa | P4b2 | Tetragonal | N | DFT Calculations, aiMD | 2023 | [11] |
Mixed-Valence Rare-Earth Fullerides | ambient up to 6 GPa | 4 GPa | Pcab | Orthorhombic | N | SXRPD, PFY-XAS | 2024 | [40] |
Cobalt Iodate | ambient up to 28 GPa | 3.0 GPa and 9.0 GPa–11.0 GPa | P21 | Monoclinic | N | Raman Spectroscopy, FT-IR Spectroscopy, DFT Calculations, HPXRD | 2021 | [41] |
Barium Titanate | ambient up to 10 GPa | 6 GPa | P4mm (tetragonal) and Pm-3m (cubic) | Tetragonal (at lower pressure) and Cubic (at higher pressure) | N | DFT Calculations | 2022 | [42] |
Zinc Iodate | ambient up to 27.8 GPa | 3.4 GPa and 8.9 GPa | P21 | Monoclinic | N | HPXRD, Raman Spectroscopy, DFT Calculations | 2021 | [43] |
Caesium Hydroxide | ambient up to 20 GPa | 10 GPa | P212121 | Orthorhombic | N | DFT Calculations, EDX | 2016 | [44] |
α-Glycylglycine | ambient up to 14.5 GPa | 6.7 GPa | P21/c | Monoclinic | N | PXRD, Raman Spectroscopy, DFT Calculations, CSP | 2020 | [45] |
α-Silver Sulfide | ambient up to 32 GPa | 7.5 GPa and 16 GPa | P21/c | Monoclinic | N | HPXRD, Raman Spectroscopy, DFT Calculations, Electrical Resistance Measurements | 2020 | [46] |
L-Serine | ambient up to 14.5 GPa | 5.3 GPa and 7.8 GPa | P212121 | Orthorhombic | Y | HRXRD | 2006 | [47] |
Sodium Manganese Fluoride | ambient up to 4.06 GPa | 2.2 GPa ± 0.5 GPa | P21/n | Monoclinic | Y | Polarized Single-Crystal Optical Absorption Spectroscopy | 1998 | [48] |
Blatter’s Radical | ambient up to 6.07 GPa | 5.34 GPa–5.54 GPa | P21/n | Monoclinic | Y | DFT calculations | 2022 | [49] |
Name | Pressure Range | Transition Range | Space Group | System | SCXRD | Other Methods | Year | References |
---|---|---|---|---|---|---|---|---|
Dabcodiium chlorochromate chloride | 173–296 K | 185 K | P21/m | Monoclinic | Y | DSC, Dielectric Measurements | 2012 | [50] |
4-Ethylanilinium hydrogen (2R,3R)-tartrate | 123–298 K | 186 K | P1 | Triclinic | Y | DSC, Dielectric Constant Measurements | 2011 | [51] |
Ibuprofen lysine salt | 30–110 °C (30–300 °C) | 70–90 C | P21/n | Monoclinic | N | PXRD, DSC, TGA | 2015 | [52] |
2-nitroanilinium bisulphate | 100–300 K | 232 K | P-1 | Triclinic | Y | FT-IR Spectroscopy, DSC | 2020 | [53] |
Dapsone | 60–100 °C | 78 °C ± 4 °C | P212121 | Orthorhombic | Y | DSC, PXRD | 2017 | [54] |
Triethylbenzylammonium Perchlorate | 93–291 K | 196 K ± 18 K | Pbca (93 K), Pbcm (291 K) | Orthorhombic | Y | DSC, Dielectric Measurements | 2013 | [26] |
R-Cinacalcet Hydrochloride | room temperature up to 423 K (150 °C) | 164.5 °C (437.65 K) | P212121 (form I, III), P1 (form II) | Orthorhombic (form I, III), Triclinic (form II) | Y | DSC, PXRD, FT-IR Spectroscopy, FT-Raman Spectroscopy | 2008 | [55] |
Pyridinium-3-Carboxylic Acid Perchlorate | 93 K–298 K | 129 K | P21/c | Monoclinic | Y | DSC, Dielectric Measurements | 2010 | [56] |
Lanthanum Gallate | room temperature up to 1100 °C | 300–1100 °C | Pnma | Orthorhombic | N | PXRD, Raman Spectroscopy, TEM | 2018 | [57] |
Yttrium manganite | room temperature up to 1403 K | 920 K | P63cm | Hexagonal | N | NPD, DTA, Rietveld Analysis | 2011 | [58] |
Yttrium Chromite | 321 K–1200 K | 900 K | Pmnb | Orthorhombic | N | NPD, DC Magnetization Measurements, Rietveld Refinement, Thermal Expansion Analysis | 2020 | [59] |
Estradiol 17β Valerate (E2V) | room temperature down to 100 K | 251.1 K (cooling) and 256.3 K (heating) | P21 | Monoclinic | Y | FT-IR Spectroscopy, DSC, ssNMR Spectroscopy | 2014 | [60] |
Potassium Lutetium Phosphate | 100 K–293 K | 230 K and 130 K | P-3 (at room temperature), P21/m (at 100 K and 200 K) | Hexagonal (at room temperature), Monoclinic (at 100 K and 200 K) | Y | NPD, DSC, Heat Capacity Measurements | 2014 | [61] |
1,4-Diazoniabicyclo[2.2.2]octane-1-acetate-4-acetic Acid Chloride Trihydrate | 135 K–298 K | 210.7 K (heating) and 180.3 K (cooling) ± 30.4 K. | P21/n | Monoclinic | Y | DSC, Dielectric Measurements | 2013 | [62] |
2-(3,5-Bis(trifluoromethyl)phenyl)-4,5-dihydro-1H-imidazole | 100 K–298 K | 150 K ± 15 K | P-1 | Triclinic | Y | PXRD, DSC, TGA | 2024 | [63] |
Layered Indium Selenide | room temperature up to 350 °C | 220 °C (heating) and 190 °C (cooling) | R3m (for α-In2Se3) and P-3m1 (for β-In2Se3) | Rhombohedral | N | DSC, XRD, DFT Calculations, Raman Spectroscopy | 2022 | [64] |
Hexathiocyanate Thulium(III) Anions | 160 K–280 K | 204.6 K (heating) and 188.7 K (cooling) ± 15.9 K | P-1 | Triclinic | Y | DSC, Dielectric Measurements, PXRD | 2021 | [65] |
Orthopyroxene | room temperature up to 1400 °C | 1170 °C (both heating and cooling) | Pbca | Orthorhombic | N | SXRPD, Unit Cell Dimension Measurements | 2008 | [66] |
Deuterated 3,5-Pyridinedicarboxylic Acid | 15 K–300 K | 150 K–200 K | P21/n | Monoclinic | Y | DFT Calculations, PXRD, NPD | 2011 | [67] |
4,4′-(Benzo[b]benzo[4,5]thieno[2,3-d]thiophene-2,7-diyl)bis(butan-1-ol) (BTBT-C4OH) | 100 K–300 K | 200 K | P21/c | Monoclinic | Y | DSC, Thermal Expansion Measurements | 2020 | [68] |
Estradiol 17β Valerate (E2V) | room temperature down to 100 K | 251.1 K (cooling) and 256.3 K (heating) | P21 | Monoclinic | N | FT-IR Spectroscopy, DFT Calculations | 2021 | [69] |
Samarium Fulleride | 4.2 K–295 K | 32 K | Pcab | Orthorhombic | N | HRXRD, Magnetic Susceptibility Measurements | 2003 | [70] |
CaTiOSiO4—CaTiOGeO4 Solid Solution | up to 1123 K | 800 ± 25 K | P21/a (low temperature), A2/a (high temperature) | Monoclinic | Y | HTXRD, TEM, Spontaneous strain Analysis | 2005 | [71] |
Lutetium Orthoborate | 20–1450 °C | 1020 °C | C2/c | Monoclinic | N | HTXRD, DSC, TGA, High-temperature Raman Spectroscopy | 2020 | [72] |
Orthoenstatite | 300 K–2000 K | 1230 K | Pbca | Orthorhombic | N | aiMD Simulations | 2004 | [9] |
Magnesium Aluminum Phosphate Oxide | room temperature up to 1170 °C | 485 °C (758 K) | P21/c | Monoclinic | Y | HTXRD, DSC, Heat Capacity Measurements | 2007 | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazurek, A.M.; Franczak-Rogowska, M.; Szeleszczuk, Ł. Isosymmetric Phase Transitions in Crystals: From Subtle Rearrangements to Functional Properties. Crystals 2025, 15, 807. https://doi.org/10.3390/cryst15090807
Mazurek AM, Franczak-Rogowska M, Szeleszczuk Ł. Isosymmetric Phase Transitions in Crystals: From Subtle Rearrangements to Functional Properties. Crystals. 2025; 15(9):807. https://doi.org/10.3390/cryst15090807
Chicago/Turabian StyleMazurek, Anna Maria, Monika Franczak-Rogowska, and Łukasz Szeleszczuk. 2025. "Isosymmetric Phase Transitions in Crystals: From Subtle Rearrangements to Functional Properties" Crystals 15, no. 9: 807. https://doi.org/10.3390/cryst15090807
APA StyleMazurek, A. M., Franczak-Rogowska, M., & Szeleszczuk, Ł. (2025). Isosymmetric Phase Transitions in Crystals: From Subtle Rearrangements to Functional Properties. Crystals, 15(9), 807. https://doi.org/10.3390/cryst15090807