Optical Fiber for High-Power Optical Communication
Abstract
:1. Introduction
2. Termination of Fiber Fuse Propagation in Photonic Crystal Fiber (PCF) and Hole-Assisted Fiber (HAF)
2.1. Fiber Parameters and Experimental Setup
2.2. Results and Discussion
3. Failures in Bent Fibers
3.1. Failures at Bends in SMF and Fiber Fuse Generation
3.2. Solutions for the Problem of Failures at Bends
4. Conclusion
References
- Kashyap, R.; Blow, K.J. Observation of catastrophic self-propelled self-focusing in optical fibers. Electron. Lett. 1988, 24, 47–49. [Google Scholar] [CrossRef]
- Hand, D.P.; Russell, P.S.J. Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse. Optics Letters 1988, 13, 767–769. [Google Scholar] [CrossRef]
- Percival, R.M.; Sikora, E.S.R.; Wyatt, R. Catastrophic damage and accelerated aging in bent fibres caused by high optical powers. Electron. Lett. 2000, 36, 414–416. [Google Scholar] [CrossRef]
- Takenaga, K.; Omori, S.; Goto, R.; Tanigawa, S.; Matsuo, S.; Himeno, K. Evaluation of high-power endurance of bend-insensitive fibers. In Proceedings of the Optical Fiber Communication/National Fiber Optic Engineers Conference, San Diego, CA, USA, 24–28 February 2008.
- Morioka, T. New generation optical infrastructure technologies: “EXAT Initiative” towards 2020 and beyond. In Proceedings of the OptoElectronics and Communication Conference, Hong Kong, China, 13–17 July 2009.
- Driscoll, T.J.; Calo, J.M.; Lawandy, N.M. Explaining the optical fuse. Optics Letters 1991, 16, 1046–1048. [Google Scholar] [CrossRef]
- Davis, D.D.; Mettler, S.C.; DiGiovanni, D.J. Experimental data on the fiber fuse. In Proceedings of SPIE; Bennett, H.E., Guenther, A.H., Kozlowski, M.R., Newnam, B.E., Soileau, M.J., Eds.; SPIE: Washington, WA, USA, 1996; 2714, pp. 202–210. [Google Scholar]
- Atkins, R.M.; Simpkins, P.G. Track of a fiber fuse: A Rayleigh instability in optical waveguides. Optics Letters 2003, 28, 974–976. [Google Scholar] [CrossRef]
- Nishimura, N.; Seo, K.; Shiino, M.; Yuguchi, R. Study of high-power endurance characteristics in optical fiber link. In Proceedings of the Optical Amplifiers and Their Applications, Otaru, Japan, 6 July 2003.
- Dianov, E.M.; Bufetov, I.A.; Frolov, A.A.; Chamorovsky, Y.K.; Ivanov, G.A.; Vorobjev, I.L. Fiber fuse effect in microstructured fibers. IEEE Photonic. Technol. Lett. 2004, 16, 180–181. [Google Scholar] [CrossRef]
- Shuto, Y.; Yanagi, S.; Asakawa, S.; Kobayashi, M.; Nagase, R. Fiber fuse phenomenon in step-index single-mode optical fibers. IEEE J. Quantum Electron. 2004, 40, 1113–1121. [Google Scholar] [CrossRef]
- Dianov, E.M.; Bufetov, I.A.; Frolov, A.A. Destruction of silica fiber cladding by the fuse effect. Optics Letters 2004, 29, 1852–1854. [Google Scholar] [CrossRef]
- Yakovlenko, S.I. On reasons for strong absorption of light in an optical fibre at high temperature. Quantum Electron. 2004, 34, 787–789. [Google Scholar] [CrossRef]
- Dianov, E.M.; Fortov, V.E.; Bufetov, I.A.; Efremov, V.P.; Rakitin, A.E.; Melkumov, M.A.; Kulish, M.I.; Frolov, A.A. Temperature of optical discharge under action of laser radiation in silica-based fibers. In Proceedings of the European Conference and Exhibition on Optical Communication, Glasgow, UK, 25–29 September 2005.
- Todoroki, S. Origin of periodic void formation during fiber fuse. Opt. Express 2005, 13, 6381–6389. [Google Scholar] [CrossRef]
- Yakovlenko, S.I. Mechanism for the void formation in the bright spot of a fiber fuse. Laser Phys. 2006, 16, 474–476. [Google Scholar] [CrossRef]
- Akhmediev, N.; Russell, P.S.J.; Taki, M.; Soto-Crespo, J.M. Heat dissipative solitons in optical fibers. Phys. Lett. A 2008, 372, 1531–1534. [Google Scholar] [CrossRef]
- Takenaga, K.; Tanigawa, S.; Matsuo, S.; Fujimaki, M.; Tsuchiya, H. Fiber fuse phenomenon in hole-assisted fibers. In Proceedings of the European Conference and Exhibition on Optical Communication, Brussels, Belgium, 21–25 September 2008.
- Takara, H.; Masuda, H.; Kanbara, H.; Abe, Y.; Miyamoto, Y.; Nagase, R.; Morioka, T.; Matsuoka, S.; Shimizu, M.; Hagimoto, K. Evaluation of fiber fuse characteristics of hole-assisted fiber for high power optical transmission systems. In Proceedings of the European Conference and Exhibition on Optical Communication, Vienna, Austria, 20–24 September 2009.
- Hanzawa, N.; Kurokawa, K.; Tsujikawa, K.; Matsui, T.; Nakajima, K.; Tomita, S.; Tsubokawa, M. Suppression of fiber fuse propagation in hole assisted fiber and photonic crystal fiber. J. Lightwave Technol. 2010, 28, 2115–2120. [Google Scholar] [CrossRef]
- Hanzawa, N.; Kurokawa, K.; Tsujikawa, K.; Takenaga, K.; Tanigawa, S.; Matsuo, S.; Tomita, S. Observation of a propagation mode of a fiber fuse with a long-period damage track in hole-assisted fiber. Optics Letters 2010, 35, 2004–2006. [Google Scholar] [CrossRef]
- Hand, D.P.; Birks, T.A. Single-Mode tapers as “fiber fuse” damage circuit-breakers. Electron. Lett. 1989, 25, 33–34. [Google Scholar] [CrossRef]
- Yanagi, S.; Asakawa, S.; Kobayashi, M.; Shuto, Y.; Nagase, R. Fiber fuse terminator. In Proceedings of the Pacific Rim Conference on Lasers and Electro-Optics, Taipei, Taiwan, 15–19 December 2003.
- Abedin, K.S.; Nakazawa, M.; Miyazaki, T. Backreflected radiation due to a propagating fiber fuse. Opt. Express 2009, 17, 6525–6531. [Google Scholar] [CrossRef]
- Birks, T.A.; Knight, J.C.; Russell, P.S.J. Endlessly single-mode photonic crystal fiber. Optics Letters 1997, 22, 961–963. [Google Scholar] [CrossRef]
- Kurokawa, K.; Nakajima, K.; Tsujikawa, K.; Yamamoto, T.; Tajima, K. Ultra-Wideband WDM transmission over PCF. J. Lightwave Technol. 2009, 27, 1653–1662. [Google Scholar] [CrossRef]
- Nakajima, K.; Hogari, K.; Zhou, J.; Tajima, K.; Sankawa, I. Hole-Assisted fiber design for small bending and splice losses. IEEE Photon. Technol. Lett. 2003, 15, 1737–1739. [Google Scholar] [CrossRef]
- Logunov, S.L.; Derosa, M.E. Effect of coating heating by high power in optical fibres at small bend diameters. Electron. Lett. 2003, 39, 897–898. [Google Scholar] [CrossRef]
- Sikora, E.S.R.; McCartney, D.J.; Farrow, K.; Davey, R. Reduction in fibre reliability due to high optical power. Electron. Lett. 2003, 39, 1043–1044. [Google Scholar] [CrossRef]
- Kurokawa, K.; Fukai, C.; Zhou, J.; Nakajima, K.; Tajima, K.; Hogari, K.; Sankawa, I. High power tolerance of optical fiber cable. In Proceedings of the OptoElectronics and Communication Conference/Conference on Optical Internet, Yokohama, Japan, 12–16 July 2004.
- Davis, I.M.; Glaesemann, G.S.; Ten, S.; Winningham, M.J. Optical fibers resilient to failure in bending under high power. In Proceedings of the European Conference and Exhibition on Optical Communication, Glasgow, UK, 25–29 September 2005.
- Chien, C.-K.; Clark, D.A.; Glaesemann, G.S.S. Coating failure of bent fiber under high power laser. In Proceedings of the International Wire & Cable Symposium and Conference, Providence, RI, USA, 13–16 November 2005.
- Bigot-Astruc, M.; Sillard, P.; Gauchard, S.; Leroux, P.; Brandon, E. Analysis of coating temperature increase in fibers under high power and tight bending. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 17–22 March 2006.
- Sun, X.; Lie, J.; Hokansson, A. Study of optical fiber damage under high optical power at 2140 nm. In Proceedings of SPIE; Gannot, I., Ed.; SPIE: Washington, WA, USA, 2007; 6433, pp. 9–15.
- Sikora, E.S.R.; McCartney, D.J.; Wright, J.V. Impact of coating ageing on susceptibility to high-power damage at fibre bends. Electron. Lett. 2007, 43, 208–210. [Google Scholar] [CrossRef]
- Matsui, T.; Nakajima, K.; Kurokawa, K.; Tajima, K.; Shiraki, K.; Sankawa, I. Temperature-Increase characteristics in bent hole-assisted fiber under high power. J. Lightwave Technol. 2007, 25, 1231–1237. [Google Scholar] [CrossRef]
- Logunov, S.L.; Chien, C.-K.; Clark, D.A. High power laser damage of standard and bend resistant fibres. Electron. Lett. 2009, 45, 1019–1020. [Google Scholar] [CrossRef]
- Kurokawa, K.; Hanzawa, N.; Tsujikawa, K.; Tmita, S. Hole-Size dependence of fiber fuse propagation in hole-assisted fiber (HAF). In Proceedings of the Microoptics Conference, Sendai, Japan, 30 October–2 November 2011.
- Roberts, P.J.; Couny, F.; Sabert, H.; Mangan, B.; Williams, D.P.; Farr, L.; Mason, M.W.; Tomlinson, A.; Birks, T.A.; Knight, J.C.; Russell, P.S.J. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 2005, 13, 236–244. [Google Scholar] [CrossRef]
- Sorensen, T.; Broeng, J.; Bjarklev, A.; Knudsen, E.; Barkou Libori, S.E. Macro-Bending loss properties of photonic crystal fibre. Electron. Lett. 2001, 37, 287–289. [Google Scholar] [CrossRef]
- Himeno, K.; Matsuo, S.; Guan, N.; Wada, A. Low-Bending-Loss single-mode fibers for fiber-to-the-home. J. Lightwave Technol. 2005, 23, 3494–3499. [Google Scholar] [CrossRef]
- Li, M.-J.; Tandon, P.; Bookbinder, D.C.; Bickham, S.R.; McDermott, M.A.; Desorcie, R.B.; Nolan, D.A.; Johnson, J.J.; Lewis, K.A.; Englebert, J.J. Ultra-Low bending loss single-mode fiber for FTTH. J. Lightwave Technol. 2009, 27, 376–382. [Google Scholar] [CrossRef]
- ITU-T Recommendation G.657, 2nd, ITU-T: Geneva, Switzerland, 2009.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kurokawa, K. Optical Fiber for High-Power Optical Communication. Crystals 2012, 2, 1382-1392. https://doi.org/10.3390/cryst2041382
Kurokawa K. Optical Fiber for High-Power Optical Communication. Crystals. 2012; 2(4):1382-1392. https://doi.org/10.3390/cryst2041382
Chicago/Turabian StyleKurokawa, Kenji. 2012. "Optical Fiber for High-Power Optical Communication" Crystals 2, no. 4: 1382-1392. https://doi.org/10.3390/cryst2041382
APA StyleKurokawa, K. (2012). Optical Fiber for High-Power Optical Communication. Crystals, 2(4), 1382-1392. https://doi.org/10.3390/cryst2041382