Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena
Abstract
:1. Introduction
2. Ions in Liquid Crystals and Methods of Liquid Crystal Purification
2.1. Issues Associated with Ions in Liquid Crystals from Electro-Optical Perspectives
2.1.1. Ions in Liquid Crystals
2.1.2. Practical Example: Electro-Optics of Liquid Crystals Driven by DC Field
2.2. The Purification of Liquid Crystals: Classical and Emerging Methods
2.2.1. Classical Methods of Liquid Crystal Purification
2.2.2. Practical Example: Electro-Optics of Highly Purified Liquid Crystals Driven by a DC Field
2.2.3. Emerging Methods of the Liquid Crystals Purification by Means of Ion Capturing Agents
3. Effect of Nanomaterials on the Electrical Properties of Liquid Crystals
3.1. Carbon-Based Nano-Objects in Liquid Crystals
Carbon-Based Nanomaterials | Liquid Crystals * | Results | Ref. |
---|---|---|---|
Fullerenes | FLC | Decrease in ion concentration | [118] |
NLC | Ion trapping | [119,141] | |
NLC | Increase in the conductivity | [120] | |
Graphene | FLC | Reduced AC conductivity and dielectric losses | [121,122,123] |
NLC | Decrease in ion concentration | [124,125] | |
CLC | Decrease in ion concentration | [126] | |
Carbon Nanotubes | NLC | Increase in the conductivity | [105,127,128,129,130,131,132,133,134,135,136,137] |
PDLC | Increase in the conductivity | [138] | |
CLC | Increase in the conductivity | [139] | |
FLC | Increase in the conductivity | [140,141,142] | |
NLC | Ion trapping | [126,143,144,145] | |
FLC | Decrease in the conductivity/dielectric losses | [146,147,148,149] | |
Diamond Nanoparticles | NLC | Both decrease and increase in the conductivity | [150,151,152] |
Carbon Dots | FLC | Increase in the conductivity | [153] |
3.2. Metal Nanoparticles in Liquid Crystals
Metal Nanoparticles | Liquid Crystals * | Results | Ref. |
---|---|---|---|
Gold | FLC | Reduced AC conductivity and the charge transfer | [154,155] |
NLC | Two orders increase in the conductivity | [156,157,158] | |
CLC | Capture and release of ions | [159] | |
ColLC | Five-six orders increase in the conductivity | [160,161,162,163,164] | |
Gold and Aerosil | NLC | Enhancement of the electrical conductivity | [165] |
Palladium | NLC | Increased dielectric losses | [166] |
Silver | NLC | Increased anisotropy of the conductivity | [167] |
FLC | Ion trapping | [168] | |
Copper | ColLC | Enhancement of the electrical conductivity | [169] |
Nickel | NLC | Ion trapping | [170] |
FLC | Increase in the conductivity | [171] | |
Titanium | NLC | Ion trapping | [172] |
3.3. Dielectric and Semiconductor Nanoparticles in Liquid Crystals
Nanoparticles | Liquid Crystals * | Results | Ref. |
---|---|---|---|
, , , , , | NLC | Reduced ion current and improved voltage holding ratio, decrease in ion concentration | [173,174,175,176,177,178,179,180,181,182,183,184] |
, , , | FLC | Decrease in the conductivity | [185,186,187,188] |
ColLC | Increase in the conductivity | [189] | |
NLC | Voltage-assisted ion reduction | [190] |
Nanoparticles | Liquid Crystals * | Results | Ref. |
---|---|---|---|
FLC | Decrease in the concentration of ions | [191,192] | |
FLC | Decrease in the conductivity | [193] | |
NLC | Release of the trapped ions under the action of the electric field | [194] |
3.4. Ferroelectric Nanoparticles in Liquid Crystals
Nanoparticles | Liquid Crystals * | Results | Ref. |
---|---|---|---|
FLC | Ion trapping | [197] | |
NLC | Increase in the conductivity | [198] | |
NLC | Decrease in the concentration of ions | [199,200] | |
NLC | Ion trapping and reduction of the screening effect | [200] |
3.5. Organic and Other Nanomaterials in Liquid Crystals
Nanomaterials | Liquid Crystals * | Results | Ref. |
---|---|---|---|
Conducting nanofiber | NLC | Increase in the conductivity | [208,209] |
Polymeric nanoparticles | FLC | Decrease in dielectric losses | [210] |
Nanoclay (montmorillonite) | NLC | Ion trapping, time dependent properties, and aggregation | [211,212,213,214,215,216,217] |
FLC | Increase in the conductivity | [218,219] |
4. Conclusions
- The chemical composition of the trapped ions (an ionic content);
- Physical mechanisms of the ion adsorption/ion desorption and charge transfer at the nanoparticle’s surface;
- The selectivity of nanoparticles to trap ions of different types;
- The effects of the capping agents and high electric field on the ion capturing;
- The appropriate models of aggregation viewed from the ion capturing perspectives;
- The total number of ions a single nanoparticle can trap, and how this number depends on the material parameters and the types of ions used.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals; Clarendon: Oxford, UK, 1993. [Google Scholar]
- Chigrinov, V.G. Liquid Crystal Devices: Physics and Applications; Artech House: Boston, MA, USA, 1999; p. 360. [Google Scholar]
- Lagerwall, J.P.F.; Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 2012, 12, 1387–1412. [Google Scholar] [CrossRef]
- Woltman, S.J.; Jay, G.D.; Crawford, G.P. Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 2007, 6, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Woltman, S.J.; Jay, G.D.; Crawford, G.P. (Eds.) Liquid Crystals Frontiers in Biomedical Applications; London World Scientific Publishing: London, UK, 2007.
- Yaghmaee, P.; Karabey O, H.; Bates, B.; Fumeaux, C.; Jakoby, R. Electrically Tuned Microwave Devices Using Liquid Crystal Technology. Int. J. Antennas Propag. 2013, 2013. Article ID 824214. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Zagorodnii, V.; Krivosik, P.; Lovejoy, J.; Camley R, E.; Celinski, Z.; Glushchenko, A.; Dziaduszek, J.; Dabrowski, R. Liquid crystal phase shifters at millimiter wave frequencies. J. Appl. Phys. 2012, 111, 054504. [Google Scholar] [CrossRef]
- Naemura, S.; Sawada, A. Ionic conduction in nematic and smectic liquid crystals. Mol. Cryst. Liquid Cryst. 2003, 400, 79–96. [Google Scholar] [CrossRef]
- De Vleeschouwer, H.; Bougriou, F.; Pauwels, H. Importance of Ion Transport in Industrial LCD Applications. Molecular Crystals and Liquid Crystals Science and Technology. Mol. Cryst. Liquid Cryst. 2001, 360, 29–39. [Google Scholar] [CrossRef]
- Perlmutter, S.H.; Doroski, D.; Moddel, G. Degradation of liquid crystal device performance due to selective adsorption of ions. Appl. Phys. Lett. 1996, 69, 1182–1184. [Google Scholar] [CrossRef]
- Sierakowski, M. Ionic interface-effects in electro-optical LC-cells. Mol. Cryst. Liquid Cryst. 2002, 375, 659–677. [Google Scholar] [CrossRef]
- Zhang, H.; D’havé, K.; Pauwels, H.; Parghi, D.D.; Heppke, G. Influence of Ion Transport in AFLCDs. In SID Symposium Digest of Technical Papers; Wiley: New York, NY, USA, 2012; Volume 31, pp. 1000–1003. [Google Scholar]
- James, R.; Stojmenovik, G.; Desimpel, C.; Vermael, S.; Aníbal Fernández, F.; Day, S.E.; Neyts, K. Influence of Ion Transport on Liquid Crystal Switching. J. Display Technol. 2006, 2, 237–246. [Google Scholar] [CrossRef]
- Pereira, H.A.; Batalioto, F.; Evangelistaa, L.R. Destabilizing effect of a surface electric field generated by ionic adsorption on the molecular orientation of nematic liquid crystals. Eur. Phys. J. E 2005, 16, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Mizusaki, M.; Miyashita, T.; Uchida, T. Behavior of ion affecting image sticking on liquid crystal displays under application of direct current voltage. J. Appl. Phys. 2010, 108, 104903. [Google Scholar] [CrossRef]
- Mizusaki, M.; Yoshimura, Y.; Yamada, Y.; Okamoto, K. Analysis of Ion Behavior Affecting Voltage Holding Property of Liquid Crystal Displays. Jpn. J. Appl. Phys. 2012, 51, 014102. [Google Scholar] [CrossRef]
- Xu, D.; Peng, F.; Chen, H.; Yuan, J.; Wu, S.-T.; Li, M.-C.; Lee, S.-L.; Tsai, W.C. Image sticking in liquid crystal displays with lateral electric fields. J. Appl. Phys. 2014, 116, 193102. [Google Scholar] [CrossRef]
- Xu, D.; Peng, F.; Chen, H.; Yuan, J.; Wu, S.-T.; Li, M.-C.; Lee, S.-L.; Tsai, W.-C. Image Sticking Reduction of Fringe Field Switching LCDs. In SID Symposium Digest of Technical Papers; Wiley: New York, NY, USA, 2015; Volume 46, pp. 739–742. [Google Scholar]
- Hung, H.-Y.; Lu, C.-W.; Lee, C.-Y.; Hsu, C.-S.; Hsieh, Y.-Z. Analysis of metal ion impurities in liquid crystals using high resolution inductively coupled plasma mass spectrometry. Anal. Methods 2012, 4, 3631–3637. [Google Scholar] [CrossRef]
- Hanna, J.; Ohno, A.; Iino, H. Charge carrier transport in liquid crystals. Thin Solid Films 2014, 554, 58–63. [Google Scholar] [CrossRef]
- Sergeyev, S.; Pisula, W.; Geerts, Y.H. Discotic liquid crystals: A new generation of organic semiconductors. Chem. Soc. Rev. 2007, 36, 1902–1929. [Google Scholar] [CrossRef] [PubMed]
- Hanna, J.-I. Charge Carrier Transport in Liquid Crystalline Semiconductors. In Liquid Crystalline Semiconductors; Springer Series in Materials Science; Bushby, R.J., Ed.; Springer: Heidelberg, Germany, 2013; Volume 169, pp. 39–64. [Google Scholar]
- Binnemans, K. Ionic liquid crystals. Chem Rev. 2005, 105, 4148–4204. [Google Scholar] [CrossRef] [PubMed]
- Axenov, K.V.; Laschat, S. Thermotropic ionic liquid crystals. Materials 2011, 4, 206–259. [Google Scholar] [CrossRef]
- Causin, V.; Saielli, G. Ionic liquid crystals. In Green Solvents II; Inamuddin, M.A., Ed.; Springer: New York, NY, USA, 2012; pp. 79–118. [Google Scholar]
- Klimusheva, G.; Mirnaya, T.; Garbovskiy, Y. Versatile nonlinear-optical materials based on mesomorphic metal alkanoates: Design, properties, and applications. Liquid Cryst. Rev. 2015, 3, 28–57. [Google Scholar] [CrossRef]
- Costa, M.R.; Altafim, R.A.C.; Mammana, A.P. Ionic impurities in nematic liquid crystal displays. Liquid Cryst. 2001, 28, 1779–1783. [Google Scholar] [CrossRef]
- Chen, X. Polymer Dispersed Liquid Crystal Formulations for Modulator Fabrication. US Patent 20080239208 A1, 2 October 2008. [Google Scholar]
- Briere, G.; Gaspard, F.; Herino, R. Ionic residual conduction in the isotropic phase of a nematic liquid crystal. Chem. Phys. Lett. 1971, 9, 285–288. [Google Scholar] [CrossRef]
- Kravchuk, R.; Koval’chuk, O.; Yaroshchuk, O. Filling initiated processes in liquid crystal cell. Mol. Cryst. Liquid Cryst. 2002, 384, 11–119. [Google Scholar] [CrossRef]
- Voinov, M.; Dunnett, J.S. Electrochemistry of nematic liquid crystals. J. Electrochem. Soc. Electrochem. Sci. Technol. 1973, 120, 922–924. [Google Scholar] [CrossRef]
- Sussman, A. Electrochemistry in nematic liquid crystal solvents. In Introduction to Liquid Crystals; Priestly, E., Ed.; Springer: Berlin, Germany, 1976; pp. 319–332. [Google Scholar]
- Murakami, S.; Naito, H. Charge injection and generation in nematic liquid crystals. Jpn. J. Appl. Phys. 1997, 36, 773–776. [Google Scholar] [CrossRef]
- Murakami, S.; Naito, H.; Okuda, M.; Sugimura, A. Steady state current in nematic liquid crystals. Mol. Cryst. Liquid Cryst. 1997, 303, 225–330. [Google Scholar] [CrossRef]
- Naemura, S.; Sawada, A. Ion generation in liquid crystals under electric field. Mol. Cryst. Liquid Cryst. 2000, 346, 155–168. [Google Scholar] [CrossRef]
- De Vleeschouwer, H.; Verschueren, A.; Bougrioua, F.; van Asselt, R.; Alexander, E.; Vermael, S.; Neyts, K.; Pauwels, H. Long-term Ion Transport in Nematic Liquid Crystal Displays. Jpn. J. Appl. Phys. 2001, 40, 3272–3276. [Google Scholar] [CrossRef]
- Neyts, K.; Beunis, F. Ion Transport in Liquid Crystals. In Handbook of Liquid Crystals, Physical Properties and Phase Behavior of Liquid Crystals; Wiley: New York, NY, USA, 2014; Volume 2, pp. 1–26. [Google Scholar]
- Sawada, A.; Tarumi, K.; Naemura, S. Effects of Electric Double Layer and Space Charge Polarization by Plural Kinds of Ions on Complex Dielectric Constant of Liquid Crystal Materials. Jpn. J. Appl. Phys. 1999, 38, 1418–1422. [Google Scholar] [CrossRef]
- Sawada, A.; Tarumi, K.; Naemura, S. Novel characterization method of ions in liquid crystal materials by complex dielectric constant measurements. Jpn. J. Appl. Phys. 1999, 38, 1423–1427. [Google Scholar] [CrossRef]
- Sawada, A.; Manabe, A.; Naemura, S. A comparative study on the attributes of ions in nematic and isotropic phase. Jpn. J. Appl. Phys. 2001, 40, 220–224. [Google Scholar] [CrossRef]
- Sawada, A.; Naemura, S. Mobility of ions in the nematic phase of 4-n-octyl-4′-cyanobiphenyl (8CB). Jpn. J. Appl. Phys. 2002, 41, L195–L197. [Google Scholar] [CrossRef]
- Heilmeier, G.H.; Heyman, P.M. Note on transient current measurements in liquid crystals and related systems. Phys. Rev. Lett. 1967, 18, 583–585. [Google Scholar] [CrossRef]
- Yanagisawa, T.; Matsumoto, H.; Yahagi, K. Transient electric current in p-methoxybenzylidene-p-n-butylaniline. Jpn. J. Appl. Phys. 1977, 16, 45–48. [Google Scholar] [CrossRef]
- Sugimura, A.; Matsui, N.; Takahashi, Y.; Sonomura, H.; Naito, H.; Okuda, M. Transient currents in nematic liquid crystals. Phys. Rev. B 1991, 43, 8272–8276. [Google Scholar] [CrossRef]
- Naito, H.; Yoshida, K.; Okuda, M.; Sugimura, A. Transient charging current in nematic liquid crystals. J. Appl. Phys. 1993, 73, 1119–1125. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Koval’chuk, A.; Grydyakina, A.; Bugaychuk, S.; Mirnaya, T.; Klimusheva, G. Electrical conductivity of lyotropic and thermotropic ionic liquid crystals consisting of metal alkanoates. Liquid Cryst. 2007, 34, 599–603. [Google Scholar] [CrossRef]
- Sasaki, N. A new measurement method for ion density in TFT-LCD panels. Mol. Cryst. Liquid Cryst. 2001, 367, 671–679. [Google Scholar] [CrossRef]
- Chen, P.-L.; Chen, S.-H.; Su, F.-C. An effective method for evaluating the image-sticking effect of TFT-LCDs by interpretative modelling of optical measurements. Liquid Cryst. 2000, 27, 965–975. [Google Scholar] [CrossRef]
- Dunmur, D.A.; Fukuda, A.; Luckhurst, G.R. (Eds.) Physical properties of liquid crystals: Nematics; EMIS Datareviews Series; INSPEC: London, UK, 2001.
- Garbovskiy, Y.; Reisman, L.; Celinski, Z.; Camley, R.E.; Glushchenko, A. Metallic surfaces as alignment layers for nondisplay applications of liquid crystals. Appl. Phys. Lett. 2011, 98, 073301. [Google Scholar] [CrossRef]
- See Figure 1 of the supplementary material for article “Ion trapping by means of ferroelectric nanoparticles, and the quantification of this process in liquid crystals”. Available online: http://dx.doi.org/10.1063/1.4926988 (accessed on 2 November 2015).
- Koval’chuk, A.V. Mechanism of charge exchange at a liquid crystal-electrode interface. J. Exp. Theor. Phys. Lett. 2000, 72, 377–380. [Google Scholar] [CrossRef]
- Koval’chuk, A.V. Relaxation processes and charge transport across liquid crystal-electrode interface. J. Phys. Condens. Matter 2001, 13, 10333–10345. [Google Scholar] [CrossRef]
- Nazarenko, V.G.; Pergamenshchik, V.M.; Koval’chuk, O.V.; Nych, A.B.; Lev, B.I. Non-Debye screening of a surface charge and a bulk-ion-controlled anchoring transition in a nematic liquid crystal. Phys. Rev. E 1999, 60, 5580–5583. [Google Scholar] [CrossRef]
- Neyts, K.; Beunis, F. Ion transport and switching currents in smectic liquid crystal devices. Ferroelectrics 2006, 344, 255–266. [Google Scholar] [CrossRef]
- Scalerandi, M.; Pagliusi, P.; Cipparrone, G.; Barbero, G. Influence of the ions on the dynamical response of a nematic cell submitted to a dc voltage. Phys. Rev. E 2004, 69, 051708. [Google Scholar] [CrossRef]
- Stojmenovik, G. Ion Transport and Boundary Image Retention in Nematic Liquid Crystal Displays. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2005. [Google Scholar]
- Murakami, S.; Iga, H.; Naito, H. Dielectric properties of nematic liquid crystals in the ultralow frewuency regime. J. Appl. Phys. 1996, 80, 6396–6400. [Google Scholar] [CrossRef]
- Bremer, M.; Naemura, S.; Tarumi, K. Model of solvation in liquid crystals. Jpn. J. Appl. Phys. 1998, 37, L88–L90. [Google Scholar] [CrossRef]
- De Vleeschouwer, H.; Verschueren, A.; Bougrioua, F.; Neyts, K.; Stojmenovik, G.; Vermael, S.; Pauwels, H. Dispersive Ion Generation in Nematic Liquid Crystal Displays. Jpn. J. Appl. Phys. 2002, 41, 1489–1494. [Google Scholar] [CrossRef]
- Barbero, G.; Olivero, D. Ions and nematic surface energy: Beyond the exponential approximation for the electric field of ionic origin. Phys. Rev. E 2002, 65, 031701. [Google Scholar] [CrossRef]
- Pereira, H.A.; Batalioto, F.; Evangelista, L.R. Contribution of the ionic adsorption phenomenon to the effective anchoring energy of a nematic liquid-crystal sample. Phys. Rev. E 2003, 68, 040701. [Google Scholar] [CrossRef]
- Palomares, L.O.; Reyes, J.A.; Barbero, G. Optical response of a nematic sample submitted to a periodic external electric field: Role of the ionic impurities. Phys. Lett. A 2004, 333, 157–163. [Google Scholar] [CrossRef]
- James, R.; Vermael, S.; Fernandez, F.A. Modelling of ion transport in liquid crystals. Proc. SPIE 2004, 5249, 95–102. [Google Scholar]
- Kucheev, S.I. Transient current in nematic cells containing a silicon substrate. J. Phys. Condens. Matter. 2008, 20, 275222. [Google Scholar] [CrossRef] [PubMed]
- Gritsenko, M.I.; Kucheev, S.I. Using the Field Effect in Silicon to Study Charge Processes in a Nematic Cell. Mol. Cryst. Liquid Cryst. 2005, 426, 109–116. [Google Scholar] [CrossRef]
- Atasiei, R.; Alexe-Ionescu, A.L.; Dias, J.C.; Evangelista, L.R.; Barbero, G. Current measurements across a nematic cell submitted to an external voltage and its equivalent electrical circuit. Chem. Phys. Lett. 2008, 461, 164–169. [Google Scholar] [CrossRef]
- Evangelista, L.R.; Barbero, G. Adsorption-desorption phenomenon and the kinetic equation at interfaces in liquid crystalline systems. Liquid Cryst. 2006, 33, 1–15. [Google Scholar] [CrossRef]
- Barbero, G.; Alexe-Ionescu, A.L. Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid. Liquid Cryst. 2005, 32, 943–949. [Google Scholar] [CrossRef]
- Derfel, G.; Buczkowska, M. Flexoelectric deformations of homeotropic nematic layers in the presence of ionic conductivity. Liquid Cryst. 2005, 32, 1183–1190. [Google Scholar] [CrossRef]
- Gabovich, A.M.; Reznikov, Y.A.; Voitenko, A.I. Excess nonspecific Coulomb ion adsorption at the metal electrode/electrolyte solution interface: Role of the surface layer. Phys. Rev. E 2006, 73, 021606. [Google Scholar] [CrossRef]
- Barbero, G.; Figueiredo Neto, A.M.; Le Digabel, J.; Martins, O.G. Ionic relaxation in nematic liquid crystal cells. Liquid Cryst. 2007, 34, 343–348. [Google Scholar] [CrossRef]
- Ciuchi, F.; Mazzulla, A.; Pane, A.; Adrian Reyes, J. AC and DC electro-optical response of planar aligned liquid crystal cells. Appl. Phys. Lett. 2007, 91, 232902. [Google Scholar] [CrossRef]
- Buczkowska, M. Influence of ions on stability of planar and homeotropic structures in hybrid aligned flexoelectric nematic layers subjected to electric field. Liquid Cryst. 2008, 35, 1199–1203. [Google Scholar] [CrossRef]
- Hwang, S.-H.; Sung, H.; Kim, K.; Kim, W.R.; Shin, D.-S. Ion transport in a reflective liquid crystal on silicon microdisplay cell. Jpn. J. Appl. Phys. 2009, 48, 051503. [Google Scholar] [CrossRef]
- Alexe-Ionescu, A.L.; Barbero, G.; Lelidis, I. Models for ionic contribution to the complex dielectric constant of nematic liquid crystals. Phys. Rev. E 2009, 80, 061203. [Google Scholar] [CrossRef]
- Alexe-Ionescu, A.L.; Barbero, G.; Ciuchi, F.; Mazzulla, A.; Scaramuzza, N. Surface treatment and bulk density of ions in nematic liquid crystals. J. Appl. Phys. 2009, 106, 044508. [Google Scholar] [CrossRef]
- Derfel, G.; Buczkowska, M. Ion adsorption and its influence on direct current electric field induced deformations of flexoelectric nematic layers. J. Chem. Phys. 2011, 135, 014903. [Google Scholar] [CrossRef] [PubMed]
- Mizusaki, M.; Miyashita, T.; Uchida, T. Kinetic analysis of image sticking with adsorption and desorption of ions to a surface of an alignment layer. J. Appl. Phys. 2012, 112, 044510. [Google Scholar] [CrossRef]
- Oh, Y.; Jang, T.-S.; Kim, J.-H. Relaxation of slow ions in nematic liquid crystal device J. Korean Phys. Soc. 2013, 63, 2024–2028. [Google Scholar] [CrossRef]
- Naito, H.; Yoshida, K.; Okuda, M.; Sugimura, A. Transient current study of ultraviolet-light soaked states in n-pentyl-p-n-cyanobiphenyl. Jpn. J. Appl. Phys. 1994, 33, 5890–5891. [Google Scholar] [CrossRef]
- Kumar, S. Liquid Crystals: Experimental Studies of Physical Properties and Phase Transitions; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Kirsch, P.; Bremer, M. Nematic Liquid Crystals for Active Matrix Displays: Molecular Design and Synthesis. Angew. Chem. Int. Ed. 2000, 39, 4216–4235. [Google Scholar] [CrossRef]
- Pauluth, D.; Tarumi, K. Advanced liquid crystals for television. J. Mater. Chem. 2004, 14, 1219–1227. [Google Scholar] [CrossRef]
- Hird, M. Fluorinated liquid crystals—Properties and applications. Chem. Soc. Rev. 2007, 36, 2070–2095. [Google Scholar] [CrossRef] [PubMed]
- Tschierske, C. Liquid crystal engineering—New complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 2007, 36, 1930–1970. [Google Scholar] [CrossRef] [PubMed]
- Keller, P.; Liebert, L. Liquid crystal synthesis for physicists. In Liquid Crystals; Supplement 14, Liebert, L., Ed.; Academic Press: New York, NY, USA, 1978; pp. 20–75. [Google Scholar]
- Haberfeld, J.L.; Hsu, E.C.; Johnson, J.F. Liquid crystal purification by zone refining. Mol. Cryst. Liquid Cryst. 1973, 24, 1–5. [Google Scholar] [CrossRef]
- Hbbard, R.L. The analysis of liquid crystal mixtures. In The Physics and Chemistry of liquid Crystal Devices; The IBM Research Symposia Series; Springer: New York, NY, USA, 1980; pp. 331–344. [Google Scholar]
- Martin, T.I.; Haas, W.E. Analysis of liquid crystal mixtures. Anal. Chem. 1981, 53, 593–602. [Google Scholar] [CrossRef]
- Sherman, E.; Lackner, A.M.; Wu, S.-T. Gas Chromatography Analysis of Diphenyl-Diacetylene Liquid Crystals, Molecular Crystals and Liquid Crystals Science and Technology. Mol. Cryst. Liquid Cryst. 1995, 265, 669–674. [Google Scholar] [CrossRef]
- Liu, Y.; Mou, S. Ion chromatographic determination of some anions and alkaline cations in liquid crystal materials after ultraviolet irradiation. Talanta 2003, 60, 1205–1213. [Google Scholar] [CrossRef]
- Sackman, E. Scientific applications of liquid crystals. In Applications of Liquid Crystals; Meier, G., Sackmann, E., Grabmaier, J.G., Eds.; Springer: Berlin, Germany, 1975; pp. 21–77. [Google Scholar]
- Gaspard, F.; Herino, R.; Mondon, F. Low Field Conduction of Nematic Liquid Crystals Studied by Means of Electrodialysis. Mol. Cryst. Liquid Cryst. 1973, 24, 145–161. [Google Scholar] [CrossRef]
- Hirai, O.; Tashiro, N.; Watanabe, O.; Nishizawa, H.; Suzuki, K. Purification of Liquid Crystals and Liquid Crystal Compositions. US Patent 5422034, 6 June 1995. [Google Scholar]
- Hirai, O.; Tashiro, N.; Watanabe, O.; Nishizawa, H.; Suzuki, K. Purification of Liquid Crystals and Liquid Crystal Composition. US Patent 5540857, 30 July 1996. [Google Scholar]
- Yoshioka, Y.; Johno, M.; Yui, T.; Mine, T. Method for Purifying Liquid Crystal. US Patent 6056892, 2 May 2000. [Google Scholar]
- Kobayashi, S.; Yoshida, N.; Tonai, A. Liquid Crystal Display Cell. US Patent 20050046782 A1, 3 March 2005. [Google Scholar]
- Huang, C.T.; Liao, K.T.; Lin, C.H.; Hsu, J.S.; Lee, W. Improved electric properties of degraded liquid crystal using metal-organic frameworks. Appl. Phys. Express 2013, 6, 121701. [Google Scholar] [CrossRef]
- Lee, W.; Huang, C.T.; Liao, K.T.; Hsu, J.S.; Lin, C.H. Metal-organic frameworks for regeneration of degraded liquid crystals. Mol. Cryst. Liquid Cryst. 2014, 601, 88–96. [Google Scholar] [CrossRef]
- Tasi, T.-Y.; Wu, P.-C.; Liao, K.-T.; Huang, H.-Y.; Lin, C.-H.; Hsu, J.-S.; Lee, W. Purification of deteriorated liquid crystals by employing porous metal–organic-framework/polymer composites. Opt. Mater. Express 2015, 5, 639–647. [Google Scholar] [CrossRef]
- Huang, Y.; Bos, P.J.; Bhowmik, A. The Ion Capturing Effect of 5 Degrees Siox Alignment Films in Liquid Crystal Devices. J. Appl. Phys. 2010, 108, 064502. [Google Scholar] [CrossRef]
- Huang, Y.; Bhowmik, A.; Bos, P.J. The effect of salt on ion adsorption on a SiOx alignment film and reduced conductivity of a liquid crystal host. J. Appl. Phys. 2012, 111, 024501. [Google Scholar] [CrossRef]
- Huang, Y.; Bhowmik, A.; Bos, P.J. Characterization of ionic impurities adsorbed onto a 5 SiOx alignment film. Jpn. J. Appl. Phys. 2012, 51, 031701. [Google Scholar]
- Lisetski, L.; Soskin, M.; Lebovka, N. Carbon Nanotubes in Liquid Crystals: Fundamental Properties and Applications. In Physics of Liquid Matter: Modern Problems; Springer Proceedings in Physics; Springer: Gewerbestrasse, Switzerland, 2015; Volume 171, pp. 243–297. [Google Scholar]
- Kumar, S. Discotic liquid crystal-nanoparticle hybrid systems. NPG Asia Mater. 2014, 6, E82. [Google Scholar] [CrossRef]
- Blanc, C.; Coursault, D.; Lacaze, E. Ordering nano- and microparticles assemblies with liquid crystals. Liquid Cryst. Rev. 2013, 1, 83–109. [Google Scholar] [CrossRef]
- Saliba, S.; Mingotaud, C.; Kahn, M.L.; Marty, J.D. Liquid crystalline thermotropic and lyotropic nanohybrids. Nanoscale 2013, 5, 6641–6661. [Google Scholar] [CrossRef] [PubMed]
- Garbovskiy, Y.; Zribi, O.; Glushchenko, A. Emerging applications of ferroelectric nanoparticles in materials technologies, biology and medicine. In Advances in Ferroelectrics; InTech: Rijeka, Croatia, 2013; pp. 475–497. [Google Scholar]
- Stamatoiu, O.; Mirzaei, J.; Feng, X.; Hegmann, T. Nanoparticles in liquid crystals and liquid crystalline nanoparticles. Top. Curr. Chem. 2012, 318, 331–394. [Google Scholar] [PubMed]
- Reznikov, Y. Ferroelectric Colloids in Liquid Crystals. In Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications; Li, Q., Ed.; Wiley: New York, NY, USA, 2012; pp. 403–426. [Google Scholar]
- Ji, Y.; Marshall, J.E.; Terentjev, E.M. Nanoparticle-Liquid Crystalline Elastomer Composites. Polymers 2012, 4, 316–340. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Kumar, S. Liquid-crystal nanoscience: An emerging avenue of soft self-assembly. Chem. Soc. Rev. 2011, 40, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.; Ahmad, F.; Rhee, J.T.; Jeon, Y.J. Nanoparticle-doped polymer-dispersed liquid crystal display. Curr. Sci. 2011, 101, 1544–1552. [Google Scholar]
- Garbovskiy, Y.; Glushchenko, A. Liquid crystalline colloids of nanoparticles: Preparation, properties, and applications. Solid State Phys. 2010, 62, 1–74. [Google Scholar]
- Dolgov, L.; Tomylko, S.; Koval’chuk, O.; Lebovka, N.; Yaroshchuk, O. Liquid crystal dispersions of carbon nanotubes: Dielectric, electro-optical and structural peculiarities. In Carbon Nanotubes; Marulanda, J.M., Ed.; Intech: Rijeka, Croatia, 2010; pp. 451–484. Available online: http://sciyo.com/books/show/title/carbon-nanotubes (accessed on 30 October 2015).
- Lagerwall, J.P.F.; Scalia, G. Carbon nanotubes in liquid crystals. J. Mater. Chem. 2008, 18, 2890–2898. [Google Scholar] [CrossRef]
- Shukla, R.K.; Raina, K.K.; Haase, W. Fast switching response and dielectric behaviour of fullerene/ferroelectric liquid crystal nanocolloids. Liquid Cryst. 2014, 41, 1726–1732. [Google Scholar] [CrossRef]
- Lee, W.; Wang, C.-Y.; Shih, Y.-C. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host. Appl. Phys. Lett. 2004, 85, 513–515. [Google Scholar] [CrossRef]
- Vovk, V.E.; Koval’chuk, A.V.; Lebovka, N. Impact of homeotropic and planar alignment of liquid crystalline medium on the structure and dielectric properties of modified fullerene mC60 + E25M mixtures. Liquid Cryst. 2012, 39, 77–86. [Google Scholar] [CrossRef]
- Singh, D.P.; Gupta, S.K.; Vimal, T.; Manohar, R. Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate. Phys. Rev. E 2014, 90, 022501. [Google Scholar] [CrossRef]
- Basu, R. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal. Appl. Phys. Lett. 2014, 105, 112905. [Google Scholar] [CrossRef]
- Lapanik, V.; Timofeev, S.; Haase, W. Electro-optic properties of nematic and ferroelectric liquid crystalline nanocolloids doped with partially reduced graphene oxide. Phase Transit. A Multinatl. J. 2015. [Google Scholar] [CrossRef]
- Wu, P.-W.; Lee, W. Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets. Appl. Phys. Lett. 2013, 102, 162904. [Google Scholar] [CrossRef]
- Basu, R.; Garvey, A.; Kinnamon, D. Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal. J. Appl. Phys. 2015, 117, 074301. [Google Scholar] [CrossRef]
- Wu, P.-C.; Lisetski, L.N.; Lee, W. Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets. Opt. Express 2015, 23, 11195–11204. [Google Scholar] [CrossRef] [PubMed]
- Baik, I.-S.; Jeon, S.Y.; Lee, S.h.; Park, K.A.; Jeong, S.H.; An, K.H.; Lee, Y.H. Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell. Appl. Phys. Lett. 2005, 87, 263110. [Google Scholar] [CrossRef]
- Huang, C.Y.; Huang, C.P. “Comment on Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell [Appl. Phys. Lett. 2005, 87, 263110]”. Appl. Phys. Lett. 2006, 89, 056101. [Google Scholar] [CrossRef]
- Jeon, S.Y.; Lee, S.H.; Lee, Y.H. Response to “Comment on Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell [Appl. Phys. Lett. 2005, 87, 263110]”. Appl. Phys. Lett. 2006, 89, 056102. [Google Scholar] [CrossRef]
- Dierking, I.; Scalia, G.; Morales, P.; LeClere, D. Aligning and reorienting carbon nanotubes with nematic liquid crystals. Adv. Mater. 2004, 16, 865–869. [Google Scholar] [CrossRef]
- Yaroshchuk, O.; Tomylko, S.; Kovalchuk, O.; Lebovka, N. Liquid crystal suspensions of carbon nanotubes assisted by organically modified Laponite nanoplatelets. Carbon 2014, 68, 389–398. [Google Scholar] [CrossRef]
- Vimal, T.; Pandey, S.; Gupta, S.K.; Singh, D.P.; Manohar, R. Enhanced negative dielectric anisotropy and high electrical conductivity of the SWCNT doped nematic liquid crystalline material. J. Mol. Liquids 2015, 204, 21–26. [Google Scholar] [CrossRef]
- Cîrtoaje, C.; Petrescu, E.; Moţoc, C. Electric field effects in nematic liquid crystals doped with carbon nanotubes. Phys. E 2013, 54, 242–246. [Google Scholar] [CrossRef]
- Lisetski, L.N.; MinenkoS, S.; Ponevchinsky, V.V.; Soskin, M.S.; Goncharuk, A.I.; Lebovka, N.I. Microstructure and incubation processes in composite liquid crystalline material (5CB) filled with multi walled carbon nanotubes. Mat. Wiss. Werkst. 2011, 42, 5–14. [Google Scholar] [CrossRef]
- Tomylko, S.; Yaroshchuk, O.; Lebovka, N. Two-step electrical percolation in nematic liquid crystals filled with multiwalled carbon nanotubes. Phys. Rev E 2015, 92, 012502. [Google Scholar] [CrossRef]
- Volpati, D.; Massey, M.K.; Johnson, D.W.; Kotsialos, A.; Qaiser, F.; Pearson, C.; Coleman, K.S.; Tiburzi, G.; Zeze, D.A.; Petty, M.C. Exploring the alignment of carbon nanotubes dispersed in a liquid crystal matrix using coplanar electrodes. J. Appl. Phys. 2015, 117, 125303. [Google Scholar] [CrossRef] [Green Version]
- García-García, A.; Vergaz, R.; Algorri, J.F.; Geday, M.A.; Otón, J.M. The peculiar electrical response of liquid crystal-carbon nanotube systems as seen by impedance spectroscopy. J. Phys. D Appl. Phys. 2015, 48, 375302. [Google Scholar] [CrossRef]
- De Filpo, G.; Siprova, S.; Chidichimo, G.; Mashin, A.I.; Nicoletta, F.P.; Cupelli, D. Alignment of single-walled carbon nanotubes in polymer dispersed liquid crystals. Liquid Cryst. 2011. [Google Scholar] [CrossRef]
- Köysal, O. Conductivity and dielectric properties of cholesteric liquid crystal doped with single wall carbon nanotube. Synth. Metals 2010, 160, 1097–1100. [Google Scholar] [CrossRef]
- Shukla, R.K.; Raina, K.K.; Hamplová, V.; Kašpar, M.; Bubnov, A. Dielectric behaviour of the composite system: Multiwall carbon nanotubes dispersed in ferroelectric liquid crystal. Phase Transit. 2011, 84, 850–857. [Google Scholar] [CrossRef]
- Prakash, J.; Choudhary, A.; Mehta, D.S.; Biradar, A.M. Effect of carbon nanotubes on response time of ferroelectric liquid crystals. Phys. Rev. E. 2009, 80, 012701. [Google Scholar] [CrossRef] [Green Version]
- Neeraj; Raina, K.K. Multiwall carbon nanotubes doped ferroelectric liquid crystal composites: A study of modified electrical behaviour. Phys. B: Condens. Matter 2014, 434, 1–6. [Google Scholar] [CrossRef]
- Lee, C.W.; Shih, W.-P. Quantification of ion trapping effect of carbon nanomaterials in liquid crystals. Mater. Lett. 2010, 64, 466–468. [Google Scholar] [CrossRef]
- Jian, B.-R.; Tang, C.-Y.; Lee, W. Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals. Carbon 2011, 49, 910–914. [Google Scholar] [CrossRef]
- Lin, F.-C.; Wu, P.-C.; Jian, B.-R.; Lee, W. Dopant effect and cell-configuration-dependent dielectric properties of nematic liquid crystals. Adv. Cond. Mat. Phys. 2013, 271574. [Google Scholar] [CrossRef]
- Malik, A.; Prakash, J.; Kumar, A.; Dhar, A.; Biradar, A.M. Copper oxide decorated multi-walled carbon nanotubes/ferroelectric liquid crystal composites for faster display devices. J. Appl. Phys. 2012, 112, 054309. [Google Scholar] [CrossRef]
- Arora, P.; Mikulko, A.; Podgornov, F.; Haase, W. Dielectric and Electro-Optic Properties of New Ferroelectric Liquid Crystalline Mixture Doped with Carbon Nanotubes. Mol. Cryst. Liquid Cryst. 2009, 502, 1–8. [Google Scholar] [CrossRef]
- Ganguly, P.; Kumar, A.; Tripathi, S.; Haranath, D.; Biradar, A.M. Effect of functionalisation of carbon nanotubes on the dielectric and electro-optical properties of ferroelectric liquid crystal. Liquid Cryst. 2014, 41, 793–799. [Google Scholar] [CrossRef]
- Basu, R. Effect of carbon nanotubes on the field-induced nematic switching. Appl. Phys. Lett. 2013, 103, 241906. [Google Scholar] [CrossRef]
- Chen, P.-S.; Huang, C.-C.; Liu, Y.-W.; Chao, C.-Y. Effect of insulating-nanoparticles addition on ion current and voltage-holding ratio in nematic liquid crystal cells. Appl. Phys. Lett. 2007, 90, 211111. [Google Scholar] [CrossRef]
- Tomylko, S.; Yaroshchuk, O.; Kovalchuk, O.; Maschke, U.; Yamaguchi, R. Dielectric properties of nematic liquid crystal modified with diamond nanoparticles. Ukrainian J. Phys. 2012, 57, 239–243. [Google Scholar]
- Tomylko, S.; Yaroshchuk, O.; Kovalchuk, O.; Maschke, U.; Yamaguchi, R. Dielectric and Electro-Optical Properties of Liquid Crystals Doped with Diamond Nanoparticles. Mol. Cryst. Liquid Cryst. 2011, 541. [Google Scholar] [CrossRef]
- Shukla, R.K.; Mirzaei, J.; Sharma, A.; Hofmann, D.; Hegmann, D.; Haase, W. Electro-optic and dielectric properties of a ferroelectric liquid crystal doped with chemically and thermally stable emissive carbon dots. RSC Adv. 2015, 5, 34491–34496. [Google Scholar] [CrossRef]
- Shukla, R.K.; Feng, X.; Umadevi, S.; Hegmann, T.; Haase, W. Influence of different amount of functionalized bulky gold nanorods dopant on the electrooptical, dielectric and optical properties of the FLC host. Chem. Phys. Lett. 2014, 599, 80–85. [Google Scholar] [CrossRef]
- Podgornov, F.V.; Ryzhkova, A.V.; Haase, W. Influence of gold nanorods size on electro-optical and dielectric properties of ferroelectric liquid crystals. Appl. Phys. Lett. 2010, 97, 212903. [Google Scholar] [CrossRef]
- Sridevi, S.; Prasad, S.K.; Nair, G.G.; D’Britto, V.; Prasad, B.L.V. Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system. Appl. Phys. Lett. 2010, 97, 151913. [Google Scholar] [CrossRef]
- Prasad, S.K.; Kumar, M.V.; Shilpa, T.; Yelamaggad, C.V. Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal. RSC Adv. 2014, 4, 4453–4462. [Google Scholar] [CrossRef]
- Prasad, S.K.; Sandhya, K.L.; Nair, G.G.; Hiremath, U.S.; Yelamaggad, C.V.; Sampath, S. Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites. Liquid Cryst. 2006, 33, 1121–1125. [Google Scholar] [CrossRef]
- Infusino, M.; De Luca, A.; Ciuchi, F.; Ionescu, A.; Scaramuzza, N.; Strangi, G. Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix. J. Mater. Sci. 2014, 49, 1805–1811. [Google Scholar] [CrossRef]
- Dhar, R.; Mishra, M.; Kumar, S. Effect of the dispersed colloidal gold nano particles on the electrical properties of a columnar discotic liquid crystal. RSC Adv. 2014, 4, 62404–62412. [Google Scholar]
- Supreet; Pratibha, R.; Kumar, S.; Raina, K.K. Effect of dispersion of gold nanoparticles on the optical and electrical properties of discotic liquid crystal. Liquid Cryst. 2014, 4, 933–939. [Google Scholar] [CrossRef]
- Holt, L.A.; Bushby, R.J.; Evans, S.D.; Burgess, A.; Seeley, G. A 106 -fold enhancement in the conductivity of a discotic liquid crystal doped with only 1% (w/w) gold nanoparticles. J. Appl. Phys. 2008, 103, 063712. [Google Scholar] [CrossRef]
- Avinash, B.S.; Lakshminarayanan, V.; Kumar, S.; Vij, J.K. Gold nanorods embedded discotic nanoribbons. Chem. Commun. 2013, 49, 978–980. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Nanoparticles in the supramolecular order of discotic liquid crystals. Liquid Cryst. 2014, 41, 353–367. [Google Scholar] [CrossRef]
- Kamaliya, B.; Kumar, M.V.; Yelamaggad, C.V.; Prasad, S.K. Enhancement of electrical conductivity of a liquid crystal-gold nanoparticle composite by a gel network of aerosil particles. Appl. Phys. Lett. 2015, 106, 083110. [Google Scholar] [CrossRef]
- Kobayashi, S.; Sakai, Y.; Miyama, T.; Nishida, N.; Toshima, N. Amplification of the Capacitance Containing Nematic Liquid Crystal Embedded with Metal Nanoparticles. J. Nanomater. 2012, 460658. [Google Scholar] [CrossRef]
- Singh, U.B.; Dhar, R.; Dabrowski, R.; Pandey, M.B. Influence of low concentration silver nanoparticles on the electrical and electro-optical parameters of nematic liquid crystals. Liquid Cryst. 2013, 40, 774–782. [Google Scholar] [CrossRef]
- Mandal, P.K.; Lapanik, A.; Wipf, R.; Stuehn, B.; Haase, W. Sub-hertz relaxation process in chiral smectic mixtures doped with silver nanoparticles. Appl. Phys. Lett. 2012, 100, 073112. [Google Scholar] [CrossRef]
- Yaduvanshi, P.; Kumar, S.; Dhar, R. Effects of copper nanoparticles on the thermodynamic, electrical and optical properties of a disc-shaped liquid crystalline material showing columnar phase. Phase Transitions Multinatl. J. 2015. [Google Scholar] [CrossRef]
- Lee, H.M.; Chung, H.-K.; Park, H.-G.; Jeong, H.-C.; Han, J.-J.; Cho, M.-J.; Lee, J.-W.; Seo, D.-S. Residual DC voltage-free behaviour of liquid crystal system with nickel nanoparticle dispersion. Liquid Cryst. 2014, 41, 247–251. [Google Scholar] [CrossRef]
- Neeraj; Raina, K.K. Nickel nanoparticles doped ferroelectric liquid crystal composites. Opt. Mater. 2013, 35, 531–535. [Google Scholar] [CrossRef]
- Ha, Y.-S.; Kim, H.-J.; Park, H.-G.; Seo, D.-S. Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping. Opt. Express 2012, 20, 6448–6455. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-T.; Chen, P.-S.; Chao, C.-Y. Effect of doped insulating nanoparticles on the electro-optical characteristics of nematic liquid crystals. Jpn. J. Appl. Phys. 2009, 48, 015006. [Google Scholar] [CrossRef]
- Chen, W.-T.; Chen, P.-S.; Chao, C.-Y. Effect of Insulating Nanoparticles Doping on Electro-Optical Characteristics in Nematic Liquid Crystal Cells. Mol. Cryst. Liquid Cryst. 2009, 507, 253–263. [Google Scholar] [CrossRef]
- Chen, P.-S.; Huang, C.-C.; Liu, Y.-W.; Chao, C.-Y. The Effect of Adding Insulating-Nanoparticles to Nematic Liquid Crystal Cells on Ion Current and Voltage-Holding Ratio. Mol. Cryst. Liquid Cryst. 2009, 507, 202–208. [Google Scholar] [CrossRef]
- Chou, T.-R.; Hsieh, J.; Chen, W.-T.; Chao, C.-Y. Influence of particle size on the ion effect of TiO2 nanoparticle doped nematic liquid crystal cell. Jpn. J. Appl. Phys. 2014, 53, 071701. [Google Scholar] [CrossRef]
- Liang, B.-J.; Liu, D.-G.; Shie, W.-Y.; Huang, S.-R. Effects of Nanoscaled Tin-Doped Indium Oxide on the Image Sticking Property of Liquid Crystal Cells. Jpn. J. Appl. Phys. 2010, 49, 025004. [Google Scholar] [CrossRef]
- Tang, C.-Y.; Huang, S.-M.; Lee, W. Electrical properties of nematic liquid crystals doped with anatase TiO2 nanoparticles. J. Phys. D Appl. Phys. 2011, 44, 355102. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kang, Y.-G.; Park, H.-G.; Lee, K.-M.; Yang, S.; Jung, H.-Y.; Seo, D.-S. Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices. Liquid Cryst. 2011, 38, 871–875. [Google Scholar] [CrossRef]
- Jung, H.-Y.; Kim, H.-J.; Yang, S.; Kang, Y.-G.; Oh, B.-Y.; Park, H.-G.; Seo, D.-S. Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices. Liquid Cryst. 2012, 39, 789–793. [Google Scholar] [CrossRef]
- Chung, H.-K.; Park, H.-G.; Ha, Y.-S.; Han, J.-M.; Lee, J.-W.; Seo, D.-S. Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion. Liquid Cryst. 2013, 40, 632–638. [Google Scholar] [CrossRef]
- Yadav, N.; Dabrowski, R.; Dhar, R. Effect of alumina nanoparticles on dielectric permittivity, electrical conductivity, director relaxation frequency, threshold and switching voltages of a nematic liquid crystalline material. Liquid Cryst. 2014, 41, 1803–1810. [Google Scholar] [CrossRef]
- Yadav, S.P.; Manohar, R.; Singh, S. Effect of TiO2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal. Liquid Cryst. 2015, 42, 1095–1101. [Google Scholar] [CrossRef]
- Yadav, S.P.; Pande, M.; Manohar, R.; Singh, S. Applicability of TiO2 nanoparticles towards suppression of screening effect in nematic liquid crystal. J. Mol. Liquids 2015, 208, 34–37. [Google Scholar] [CrossRef]
- Joshi, T.; Prakash, J.; Kumar, A.; Gangwar, J.; Srivastava, A.K.; Singh, S.; Biradar, A.M. Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal. J. Phys. D Appl. Phys. 2011, 44, 315404. [Google Scholar] [CrossRef]
- Chandran, A.; Prakash, J.; Ganguly, P.; Biradar, A.M. Zirconia nanoparticles/ferroelectric liquid crystal composites for ionic impurity-free memory applications. RSC Adv. 2013, 3, 17166–17173. [Google Scholar] [CrossRef]
- Gupta, S.K.; Singh, D.P.; Manohar, R. Electrical and polarization behaviour of titania nanoparticles doped ferroelectric liquid crystal. Adv. Mater. Lett. 2015, 6, 68–72. [Google Scholar]
- Chandran, A.; Prakash, J.; Naik, K.K.; Srivastava, A.K.; Dąbrowski, R.; Czerwiński, M.; Biradara, A.M. Preparation and characterization of MgO nanoparticles/ferroelectric liquid crystal composites for faster display devices with improved contrast. J. Mater. Chem. C 2014, 2, 1844–1853. [Google Scholar] [CrossRef]
- Supreet, S.; Kumar, K.K.; Raina, R. Pratibha Enhanced stability of the columnar matrix in a discotic liquid crystal by insertion of ZnO nanoparticles. Liquid Cryst. 2013, 40, 228–236. [Google Scholar] [CrossRef]
- Liao, S.-W.; Hsieh, C.-T.; Kuo, C.-C.; Huang, C.-Y. Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions. Appl. Phys. Lett. 2012, 101, 161906. [Google Scholar] [CrossRef]
- Shukla, R.K.; Galyametdinov, Y.G.; Shamilov, R.R.; Haase, W. Effect of CdSe quantum dots doping on the switching time, localised electric field and dielectric parameters of ferroelectric liquid crystal. Liquid Cryst. 2014, 41, 1889–1896. [Google Scholar] [CrossRef]
- Singh, D.P.; Gupta, S.K.; Tripathi, P.; Varia, M.C.; Kumar, S.; Manohar, R. Reduced ionic contaminations in CdSe quantum dot dispersed ferroelectric liquid crystal and its applications. Liquid Cryst. 2014, 41, 1356–1365. [Google Scholar] [CrossRef]
- Malik, P.; Chaudhary, A.; Mehra, R.; Raina, K.K. Electrooptic and Dielectric Studies in Cadmium Sulphide Nanorods/Ferroelectric Liquid Crystal Mixtures. Adv. Condens. Matter Phys. 2012, 2012, 853160. [Google Scholar] [CrossRef]
- Konshina, E.A.; Galin, I.F.; Gavrish, E.O. Reversible Capacitance Change of Nematic Liquid Crystal Cell Doped with Semiconductor CdSe/ZnS Quantum Dots. Univ. J. Mater. Sci. 2014, 2, 1–4. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 2nd ed.; Wiley: New York, NY, USA, 1975; pp. 1–848. [Google Scholar]
- Klein, M.B. Photorefractive properties of BaTiO3. In Photorefractive Materials and Their Applications SpringerSeries in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2007; Volume 2, pp. 241–284. [Google Scholar]
- Shukla, R.K.; Liebig, C.M.; Evans, D.R.; Haase, W. Electro-optical behaviour and dielectric dynamics of harvested ferroelectric LiNbO3 nanoparticle-doped ferroelectric liquid crystal nanocolloids. RSC Adv. 2014, 4, 18529–18536. [Google Scholar] [CrossRef]
- Ouskova, E.; Buchnev, O.; Reshetnyak, V.; Yu, R.; Kresse, H. Dielectric relaxation spectroscopy of a nematic liquid crystal doped with ferroelectric Sn2P2S6 nanoparticles. Liquid Cryst. 2003, 30, 1235–1239. [Google Scholar] [CrossRef]
- Basu, R; Garvey, A. Effects of ferroelectric nanoparticles on ion transport in a liquid crystal. Appl. Phys. Lett. 2014, 105, 151905. [Google Scholar]
- Garbovskiy, Y.; Glushchenko, I. Ion trapping by means of ferroelectric nanoparticles, and the quantification of this process in liquid crystals. Appl. Phys. Lett. 2015, 107, 041106. [Google Scholar] [CrossRef]
- Atkuri, H.; Cook, G.; Evans, D.R.; Cheon, C.-I.; Glushchenko, A.; Reshetnyak, V.; Reznikov, Y.; West, J.; Zhang, K. Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids. J. Opt. A. 2009, 11, 024006. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Glushchenko, A. Optical/ferroelectric characterization of BaTiO3and PbTiO3 colloidal nanoparticles and their applications in hybrid materials technologies. Appl. Opt. 2013, 52, E34–E39. [Google Scholar] [CrossRef] [PubMed]
- Zribi, O.; Garbovskiy, Y.; Glushchenko, A. Single step colloidal processing of stable aqueous dispersions of ferroelectric nanoparticles for biomedical imaging. Mater. Res. Express 2014, 1, 045401. [Google Scholar] [CrossRef]
- Cook, G.; Barnes, J.L.; Basun, S.A.; Evans, D.R.; Ziolo, R.F.; Ponce, A.; Reshetnyak, V.Y.; Glushchenko, A.; Banerjee, P.P. Harvesting single ferroelectric domain stressed nanoparticles for optical and ferroic applications. J. Appl. Phys. 2010, 108, 064309. [Google Scholar] [CrossRef]
- Jacob, I. Intermolecular and Surface Forces, 2nd ed.; Academic Press: New York, NY, USA, 1992; p. 450. [Google Scholar]
- Garbovskiy, Y.; Baptist, J.R.; Thompson, J.; Hunter, T.; Lim, J.H.; Gi, M.S.; Wiley, J.B.; Malkinski, L.M.; Glushchenko, A.; Celinski, Z. Increasing the switching speed of liquid crystal devices with magnetic nanorods. Appl. Phys. Lett. 2012, 101, 181109. [Google Scholar] [CrossRef]
- Kurochkin, O.; Mavrona, E.; Apostolopoulos, V.; Blach, J.-F.; Henninot, J.-F.; Kaczmarek, M.; Saitzek, S.; Sokolova, M.; Reznikov, Y. Electrically charged dispersions of ferroelectric nanoparticles. Appl. Phys. Lett. 2015, 106, 043111. [Google Scholar] [CrossRef]
- Manda, R.; Dasari, V.; Sathyanarayana, P.; Rasna, M.V.; Paik, P.; Dhara, S. Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibers. Appl. Phys. Lett. 2013, 103, 141910. [Google Scholar] [CrossRef]
- Rasna, M.V.; Zuhail, K.P.; Manda, R.; Paik, P.; Haase, W.; Dhara, S. Discontinuous anchoring transition and photothermal switching in composites of liquid crystals and conducting polymer nanofibers. Phys. Rev. E 2014, 89, 052503. [Google Scholar] [CrossRef]
- Kumar, A.; Silotia, P.; Biradar, A.M. Effect of polymeric nanoparticles on dielectric and electro-optical properties of ferroelectric liquid crystals. J. Appl. Phys. 2010, 108, 024107. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-M.; Tsai, T.-Y.; Huang, Y.-P.; Chen, W.-S.; Lee, W. Electrical and Electro-Optical Properties of Nematic-Liquid-Crystal-Montmorillonite-Clay Nanocomposites. Jpn. J. Appl. Phys. 2007, 46, 7368. [Google Scholar] [CrossRef]
- Tsai, T.-Y.; Huang, Y.-P.; Chen, H.-Y.; Lee, W.; Chang, Y.-M.; Chin, W.-K. Electro-optical properties of a twisted nematic-montmorillonite-clay nanocomposite. Nanotechnology 2005, 16, 1053. [Google Scholar] [CrossRef]
- Liu, H.-H.; Lee, W. Time-varying ionic properties of a liquid-crystal cell. Appl. Phys. Lett. 2010, 97, 023510. [Google Scholar] [CrossRef]
- Liu, H.-H.; Lee, W. Ionic properties of liquid crystals dispersed with carbon nanotubes and montmorillonite nanoplatelets. Appl. Phys. Lett. 2010, 97, 173501. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Chen, H.-Y.; Lee, W.; Tsai, T.-Y.; Chin, W.-K. Transient behaviour of polarity-reversed current in a liquid-crystal–montmorillonite-clay device. Nanotechnology 2005, 16. Number 4. [Google Scholar] [CrossRef]
- Lebovka, N.; Goncharuk, A.; Bezrodna, T.; Chashechnikova, I.; Nesprava, V. Microstructure and electrical conductivity of hybrid liquid crystalline composites including 5CB, carbon nanotubes and clay platelets. Liquid Cryst. 2012, 39, 531–538. [Google Scholar] [CrossRef]
- Shaydyuk, Y.; Puchkovska, G.; Goncharuk, A.; Lebovka, N. Aggregation of clay platelets in nematic liquid crystal, 5CB: Microstructure, electrical conductivity and rheological investigations. Liquid Cryst. 2011, 38, 155–161. [Google Scholar] [CrossRef]
- Singh, D.P.; Gupta, S.K.; Pandey, A.C.; Manohar, R. Dielectric relaxation and electrical properties of ZnO1-xSx nanoparticle dispersed ferroelectric mesophase. Adv. Mater. Lett. 2013, 4, 556. [Google Scholar]
- Singh, D.P.; Gupta, S.K.; Manohar, R. Nanosphere in Ferroelectric Liquid Crystal Matrix: The Effect of Aggregation and Defects on the Dielectric and Electro-Optical Properties. Adv. Condens. Matter Phys. 2013, 2013, 250301. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbovskiy, Y.; Glushchenko, I. Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena. Crystals 2015, 5, 501-533. https://doi.org/10.3390/cryst5040501
Garbovskiy Y, Glushchenko I. Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena. Crystals. 2015; 5(4):501-533. https://doi.org/10.3390/cryst5040501
Chicago/Turabian StyleGarbovskiy, Yuriy, and Iryna Glushchenko. 2015. "Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena" Crystals 5, no. 4: 501-533. https://doi.org/10.3390/cryst5040501
APA StyleGarbovskiy, Y., & Glushchenko, I. (2015). Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena. Crystals, 5(4), 501-533. https://doi.org/10.3390/cryst5040501