Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review
Abstract
:1. Introduction
2. Ureolytic Metabolism
3. Types of Biominerals Produced by Ureolytic Bacteria
4. Application of Ureolytic Bacteria for the Removal of Heavy Metals and Radionuclides from Aqueous Solutions
5. Phosphorus Precipitation from Wastewaters
6. Precipitation of Ions from Wastewater and Seawater
7. Current Limitations for the Application of Biomineralization
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anaya, M.; Martínez, J.M. Manual de Captación de Agua de Lluvia Para Áreas Rurales: Sistemas de Captación Y Aprovechamiento del Agua de Lluvia Para Uso Doméstico y Consumo Humano en América Latina y el Caribe. México, Instituto de Enseñanza e Investigación en Ciencias Agrícolas. 2007. Available online: http://www.pnuma.org/recnat/esp/public.php (accessed on 15 April 2016).
- Lattemann, S.; Höpner, T. Environmental Impact and Impact Assessment of Seawater Desalination. Desalination 2008, 220, 1–15. [Google Scholar] [CrossRef]
- Dawoud, M.A.; Al Mulla, M.M. Environmental Impacts of Seawater Desalination: Arabian Gulf Case Study. Int. J. Environ. Sustain. 2012, 1, 22–37. [Google Scholar] [CrossRef]
- DeJong, J.T.; Soga, K.; Banwart, S.; Whalley, W.R.; Ginn, T.R.; Nelson, D.C.; Mortensen, B.M.; Martinez, B.C.; Barkouki, T. Soil Engineering In Vivo: Harnessing Natural Biogeochemical Systems for Sustainable, Multi-functional Engineering Solutions. J. R. Soc. Interface 2011, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, M. Biomimetics: Materials Fabrication through Biology. Proc. Natl. Acad. Sci. USA 1999, 96, 14183–14185. [Google Scholar] [CrossRef] [PubMed]
- Anbu, P.; Kang, C.H.; Shin, Y.-J.; So, J.-S. Formations of Calcium Carbonate Minerals by Bacteria and its Multiple Applications. SpringerPlus 2016, 5, 250. [Google Scholar] [CrossRef] [PubMed]
- Benzerara, K.; Miot, J.; Morin, G.; Ona-Nguema, G.; Skouri-Panet, F.; Férard, C. Significance, Mechanisms and Environmental Implications of Microbial Biomineralization. C. R. Geosci. 2011, 343, 160–167. [Google Scholar] [CrossRef]
- Phillips, A.J.; Gerlach, R.; Lauchnor, E.; Mitchell, A.C.; Cunningham, A.B.; Spangler, L. Engineered Applications of Ureolytic Biomineralization: A Review. Biofouling 2013, 29, 715–733. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, C.; Jroundi, F.; Rodriguez-Gallego, M.; Arias, J.M.; González-Muñoz, M.T. Biomineralization induced by Myxobacteria. Commun. Curr. Res. Educ. Top. Trends Appl. Microbiol. 2007, 1, 143–154. [Google Scholar]
- Sarayu, K.; Iyer, N.G.; Ramachandra-Murty, A. Exploration on the Biotechnological Aspect of the Ureolytic Bacteria for the Production of the Cementitious Materials—A Review. Appl. Biochem. Biotechnol. 2014, 172, 2308–2323. [Google Scholar] [CrossRef] [PubMed]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological Precipitation of CaCO3. Soil Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- Chafetz, H.S.; Buczynski, C. Bacterially Induced Lithification of Microbial Mats. Palaios 1992, 7, 277–293. [Google Scholar] [CrossRef]
- Ben Omar, N.; Martínez-Cañamero, M.; González-Muñoz, M.T.; Arias, J.M.; Huertas, F. Struvite Crystallization on Myxococcus cells. Chemosphere 1995, 30, 2387–2396. [Google Scholar] [CrossRef]
- Von Knorre, H.; Krumbein, W.E. Microbial Sediments; Riding, R., Awaramik, S., Eds.; Springer: Berlin, Germany, 2000; pp. 25–31. [Google Scholar]
- Paerl, H.W.; Stepp, T.F.; Reid, R.P. Bacterially Mediated Precipitation in Marine Stromatolites. Environ. Microbiol. 2001, 3, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Decho, A.W. Microbial Biofilms in Intertidal Systems: An Overview. Cont. Shelf. Res. 2000, 20, 1257–1273. [Google Scholar] [CrossRef]
- Pentecost, A. Association of Cyanobacteria with Tufa Deposits: Identity, Enumeration and Nature of the Sheath Material Revealed by Histochemistry. Geomicrobiol. J. 1985, 4, 285–298. [Google Scholar] [CrossRef]
- Whiffin, V.S.; Van Paassen, L.A.; Harkes, M.P. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Wright, D.T. The Role of Sulphate-Reducing Bacteria and Cyanobacteria in Dolomite Formation in Distal Ephemeral Lakes of the Coorong region, South Australia. Sediment. Geol. 1999, 126, 147–157. [Google Scholar] [CrossRef]
- Castanier, S.; Le Métayer-Levrel, G.; Orial, G.; Loubière, J.-F.; Pethuisot, J.P. Of Microbes and Art: The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage; Ciferri, O., Ed.; Plenun: New York, NY, USA, 2000; pp. 203–218. [Google Scholar]
- Ben Chekroun, K.; Rodriguez-Navarro, C.; Gonzalez-Muñoz, M.T.; Arias, J.M.; Cultrone, G.; Rodriguez-Gallego, M. Precipitation and Growth Morphology of Calcium Carbonate induced by Myxococcus xanthus: Implications for Regognition of Bacterial Carbonates. J. Sediment. Res. 2004, 74, 868–876. [Google Scholar] [CrossRef]
- Rivadeneyra, M.A.; Párraga, J.; Delgado, R.; Ramos-Cormenzana, A.; Delgado, G. Biomineralization of Carbonates by Halobacillus trueperi in Solid and Liquid Media with Different Salinities. FEMS Microbiol. Ecol. 2004, 48, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Baskar, S.; Baskar, R.; Mauclaire, L.; McKenzie, J.A. Microbially induced Calcite Precipitation by Culture Experiments—Possible Origin for Stalactites in Sahastradhara, Dehradun, India. Curr. Sci. 2006, 90, 58–64. [Google Scholar]
- Coates, J.D.; Anderson, R.T.; Woodward, J.C.; Phillips, E.J.P.; Lovley, D.R. Anaerobic Hydrocarbon Degradation in Petroleum-Contaminated Harbor Sediment Under Sulfate-Reducing and Artificially Imposed Iron-Reducing Conditions. Environ. Sci. Technol. 1996, 30, 2784–2789. [Google Scholar] [CrossRef]
- Ringelberg, D.B.; White, D.C.; Nishijima, M.; Sano, H.; Burghardt, J.; Stackebrandt, E.; Nealson, K.H. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. 1999, 49, 705–724. [Google Scholar]
- Jerden, J.L.; Sinha, A.K. Phosphate Based Immobilization of Uranium in an Oxidizing Bedrock Aquifer. Appl. Geochem. 2003, 18, 823–843. [Google Scholar] [CrossRef]
- Jroundi, F.; Merroun, M.; Arias, J.M.; Rossberg, A.; Selenska-Pobell, S.; Gonzalez-Muñoz, M.T. Spectroscopic and Microscopic Characterization of Uranium Biomineralization by Myxococcus xanthus. Geomicrobiol. J. 2007, 24, 441–449. [Google Scholar] [CrossRef]
- Takazoe, I.; Vogel, J.; Ennever, J. Calcium Hydroxyapatite Nucleation by Lipid Extract of Bacterionema matruchotii. J. Dent. Res. 1970, 49, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.; Streckfu, J.; Vogel, J.; Ennever, J. Struvite Crystals in Colonies of Bacterionema matruchotii and its Variants. J. Dent. Res. 1971, 50, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Al-Thawadi, S.M. Ureolytic Bacteria and Calcium Carbonate Formation as a Mechanism of Strength Enhancement of Sand. J. Adv. Sci. Eng. Res. 2011, 1, 98–114. [Google Scholar]
- Abo-El-Enein, S.A.; Ali, A.H.; Talkhan, F.N.; Abdel-Gawwad, H.A. Utilization of Microbial Induced Calcite Precipitation for Sand Consolidation and Mortar Crack Remediation. HBRC J. 2012, 8, 185–192. [Google Scholar] [CrossRef]
- Bosak, T. Calcite Precipitation, Microbially Induced. In Encyclopedia of Earth Sciences Series; Reitner, J., Thiel, V., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 223–227. [Google Scholar]
- Hammes, F.; Seka, A.; De Knijf, S.; Verstraete, W. A Novel Approach to Calcium Removal from Calcium-Rich Industrial Wastewater. Water Res. 2003, 37, 699–704. [Google Scholar] [CrossRef]
- Burbank, M.B.; Weaver, T.J.; Williams, B.C.; Crawford, R.L. Urease Activity of Ureolytic Bacteria Isolated from Six Soils in which Calcite was Precipitated by Indigenous Bacteria. Geomicrobiol. J. 2012, 29, 389–395. [Google Scholar] [CrossRef]
- Yoon, J.H.; Lee, K.C.; Weiss, N.; Kho, Y.H.; Kang, K.H.; Park, Y.H. Sporosarcina aquimarina sp. nov., a Bacterium Isolated from Seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and Emended Description of the Genus Sporosarcina. Int. J. Syst. Evol. Microbiol. 2001, 51, 1079–1086. [Google Scholar] [PubMed]
- Krajewska, B. Ureases I. Functional, Catalytic and Kinetic Properties: A Review. J. Mol. Catal. B Enzym. 2009, 59, 9–21. [Google Scholar] [CrossRef]
- Knoll, A.H. Biomineralization and Evolutionary History. Rev. Mineral. Geochem. 2003, 54, 329–356. [Google Scholar] [CrossRef]
- Kumari, D.; Qian, X.Y.; Pan, X.; Achal, V.; Li, Q.; Gadd, G.M. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. Adv. Appl. Microbiol. 2016, 94, 79–108. [Google Scholar] [PubMed]
- Ehrlich, L.; Newman, D.K. Geomicrobiology, 5th ed.; CRC Press; Taylor & Francis Group: New York, NY, USA, 2009. [Google Scholar]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Biomineralization of Calcium Carbonates and their Engineered Applications: A Review. Front. Microbiol. 2013, 4, 314. [Google Scholar] [CrossRef] [PubMed]
- IŞık, M.; AltaŞ, L.; KurmaÇ, Y.; Özcan, S.; OruÇ, Ö. Effect of Hydraulic Retention Time on Continuous Biocatalytic Calcification Reactor. J. Hazard. Mater. 2010, 182, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Işik, M.; Altaş, L.; Özcan, S.; Şimşek, I.; Aĝdaĝ, O.N.; Alaş, A. Effect of Urea Concentration on Microbial Ca Precipitation. J. Ind. Eng. Chem. 2012, 18, 1908–1911. [Google Scholar] [CrossRef]
- Arias, D.; Cisternas, L.A.; Rivas, M. Biomineralization of Calcium and Magnesium Crystals from Seawater by Halotolerant Bacteria Isolated from Atacama Salar (Chile). Desalination 2017, 405, 1–9. [Google Scholar] [CrossRef]
- Dick, J.; De Windt, W.; De Graef, B.; Saveyn, H.; Van der Meeren, P.; De Belie, N.; Verstraete, W. Bio-deposition of a Calcium Carbonate Layer on Degraded Limestone by Bacillus species. Biodegradation 2006, 17, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Silva-Castro, G.A.; Uad, I.; Gonzalez-Martinez, A.; Rivadeneyra, A.; Gonzalez-Lopez, J.; Rivadeneyra, M.A. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine. BioMed Res. Int. 2015, 2015, 816102. [Google Scholar] [CrossRef] [PubMed]
- Achal, V.; Mukherjee, A.; Kumari, D.; Zhang, Q. Biomineralization for Sustainable Construction—A review of Processes and Applications. Earth-Sci. Rev. 2015, 148, 1–17. [Google Scholar] [CrossRef]
- Li, M.; Cheng, X.; Guo, H. Heavy Metal Removal by Biomineralization of Urease Producing Bacteria Isolated from Soil. Int. Biodeterior. Biodegrad. 2012, 76, 81–85. [Google Scholar] [CrossRef]
- Barabesi, C.; Galizzi, A.; Mastromei, G.; Rossi, M.; Tamburini, E.; Perito, B. Bacillus subtilis Gene Cluster Involved in Calcium Carbonate Biomineralization. J. Bacterial. 2007, 189, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Achal, V.; Mukherjee, A.; Basu, P.C.; Reddy, M.S. Strain Improvement of Sporosarcina pasteurii for Enhanced Urease and Calcite Production. J. Ind. Microbial. Biotechnol. 2009, 36, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Uad, I.; Gonzalez-Lopez, J.; Silva-Castro, G.A.; Vílchez, J.I.; Gonzalez-Martinez, A.; Martin-Ramos, D.; Rivadeneyra, M.A. Precipitation of Carbonates Crystals by Bacteria Isolated from a Submerged fixed-film Bioreactor used for the Treatment of urban Wastewater. Int. J. Environ. Res. 2014, 8, 435–446. [Google Scholar]
- Mitchell, A.C.; Ferris, F.G. The Influence of Bacillus pasteurii on the Nucleation and Growth of Calcium Carbonate. Geomicrobiol. J. 2006, 23, 213–226. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Jimenez-Lopez, C.; Rodriguez-Navarro, A.; Gonzalez-Muñoz, M.T.; Rodriguez-Gallego, M. Bacterially mediated Mineralization of Vaterite. Geochim Cosmochim. Acta 2007, 71, 1197–1213. [Google Scholar] [CrossRef]
- Morse, J.W.; Casey, W.H. Ostwald Processes and Mineral Paragenesis in Sediments. Am. J. Sci. 1988, 288, 537–560. [Google Scholar] [CrossRef]
- Zamarreño, D.; Inkpen, R.; May, E. Carbonate Crystals precipitated by Freshwater Bacteria and their use as a Limestone Consolidant. Appl. Environ. Microbiol. 2009, 75, 5981–5990. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.C.; Phillips, A.J.; Schultz, L.; Parks, S.; Spangler, L.; Cunningham, A.; Gerlach, R. Microbial CaCO3 Mineral Formation and Stability in an Experimentally Simulated High Pressure Saline Aquifer with Supercritical CO2. Int. J. Greenh. Gas Control 2013, 15, 86–96. [Google Scholar] [CrossRef]
- Kang, C.-H.; Kwon, Y.-J.; So, J.-S. Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. 2016, 89, 64–69. [Google Scholar] [CrossRef]
- Cheng, L.; Ha Hin, M.A.S.; Cord-Ruwisch, R. Bio-cementation of Sandy Soil using Microbially induced Carbonate Precipitation for Marine Environments. Géotechnique 2014, 64, 1010–1013. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Fu, Q.; Zhang, D. Biomineralization Based Remediation of As (III) Contaminated Soil by Sporosarcina ginsengisoli. J. Hazard. Mater. 2012, 201, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Achal, V.; Pan, X.; Zhang, D. Bioremediation of Strontium (Sr) Contaminated Aquifer Quartz Sand based on Carbonate Precipitation induced by Sr Resistant Halomonas sp. Chemosphere 2012, 89, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Al-Thawadi, S.M.; Cord-Ruwisch, R.; Bououdina, M. Consolidation of Sand Particles by Nanoparticles of Calcite after Concentrating Ureolytic Bacteria in situ. Int. J. Green Nanotechnol. 2012, 4, 1–9. [Google Scholar] [CrossRef]
- Knobel, L.L.; Bartholomay, R.C.; Cecil, L.D.; Tucker, B.J.; Wegner, S.J. Chemical Constituents in the Dissolved and Suspended Fractions of Groundwater from Selected Sites, Idaho National Engineering Laboratory and Vicinity, Idaho, 1989; Open-File Report Geological Survey: Idaho Falls, ID, USA, 1992.
- Reeder, J.R.; Lamble, G.M.; Northrup, P.A. XAFS Study of the coordination and Local Relaxation around Co2+, Zn2+, Pb2+ and Ba2+ trace elements in Calcite. Am. Mineral. 1999, 84, 1049–1060. [Google Scholar] [CrossRef]
- Mitchell, A.C.; Ferris, F.G. The Coprecipitation of Sr into Calcite precipitates induced by bacterial Ureolysis in Artificial Groundwater: Temperature and Kinetic Dependence. Geochim. Cosmochim. Acta 2005, 69, 4199–4210. [Google Scholar] [CrossRef]
- Nigro, A.; Sappa, G.; Barbieri, M. Strontium Isotope as Tracers of Groundwater Contamination. Procedia Earth Planet. Sci. 2017, 17, 352–355. [Google Scholar] [CrossRef]
- He, J.; Chen, J.P. A Comprehensive Review on Biosorption of Heavy Metals by Algal Biomass: Materials, Performances, Chemistry, and Modelling Simulation Tools. Bioresour. Technol. 2014, 160, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Dixit, R.; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Paul, D. Bioremediation of Heavy Metals from Soil and Aquatic Environment: an Overview of Principles and Criteria of Fundamental Processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef]
- Wu, Y.J.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.; Zhang, G.; Williams, K.; Taylor, J.; Fujita, Y.; Smith, R. Geophysical Monitoring and Reactive Transport Modeling of Ureolytically driven Calcium Carbonate Precipitation. Geochem. Trans. 2011, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Taylor, J.L.; Wendt, L.M.; Reed, D.W.; Smith, R.W. Evaluating the Potential of Native Ureolytic Microbes to Remediate a 90Sr contaminated Environment. Environ. Sci. Technol. 2010, 44, 7652–7658. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Redden, G.D.; Ingram, J.C.; Cortez, M.M.; Ferris, F.G.; Smith, R.W. Strontium Incorporation into Calcite Generated by Bacterial Ureolysis. Geochim. Cosmochim. Acta 2004, 68, 3261–3270. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Zhang, D. Remediation of Copper-Contaminated Soil by Kocuria flava CR1, based on Microbially induced Calcite Precipitation. Ecol. Eng. 2011, 37, 1601–1605. [Google Scholar] [CrossRef]
- IŞik, M. Biosorption of Ni(II) from Aqueous Solutions by Living and Non-living Ureolytic Mixed Culture. Colloids Surf. B Biointerfaces 2008, 62, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Altaş, L.; Kiliç, A.; Koçyiĝit, H.; Işik, M. Adsorption of Cr(VI) on Ureolytic Mixed culture from Biocatalytic Calcification Reactor. Colloids Surf. B Biointerfaces 2011, 86, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Simsek, I.; Karatas, M.; Basturk, E. Cu(II) Removal from Aqueous Solution by Ureolytic mixed Culture (UMC). Colloids Surf. B Biointerfaces 2013, 102, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Pastor, L.; Mangin, D.; Barat, R.; Seco, A. A Pilot-scale Study of Struvite Precipitation in a Stirred Tank Reactor: Conditions Influencing the Process. Bioresour. Technol. 2008, 99, 6285–6291. [Google Scholar] [CrossRef] [PubMed]
- Desmidt, E.; Verstraete, W.; Dick, J.; Meesschaert, B.D.; Carballa, M. Ureolytic Phosphate Precipitation from Anaerobic Effluents. Water Sci. Technol. 2009, 59, 1983–1988. [Google Scholar] [CrossRef] [PubMed]
- Rivadeneyra, M.A.; Pérez-García, I.; Ramos-Cormenzana, A. Influence of Ammonium Ion on bacterial Struvite Production. Geomicrobiol. J. 1992, 10, 125–137. [Google Scholar] [CrossRef]
- Stratful, I.; Scrimshaw, M.D.; Lester, J.N. Conditions Influencing the Precipitation of Magnesium Ammonium Phosphate. Water Res. 2001, 35, 4191–4199. [Google Scholar] [CrossRef]
- Carballa, M.; Moerman, W.; De Windt, W.; Grootaerd, H.; Verstraete, W. Strategies to Optimize Phosphate Removal from Industrial Anaerobic Effluents by Magnesium Ammonium Phosphate (MAP) Production. J. Chem. Technol. Biotechnol. 2009, 84, 63–68. [Google Scholar] [CrossRef]
- Doyle, J.D.; Parsons, S.A. Struvite Formation, Control and Recovery. Water Res. 2002, 36, 3925–3940. [Google Scholar] [CrossRef]
- Alamdari, A.; Rohani, S. Phosphate Recovery from Municipal Wastewater through Crystallization of Calcium Phosphate. Pac. J. Sci. Technol. 2007, 8, 27–31. [Google Scholar]
- Stratful, I.; Brett, S.; Scrimshaw, M.B.; Lester, J.N. Biological Phosphorus Removal, its Role in Phosphorous Recycling. Environ. Technol. 1999, 20, 681–695. [Google Scholar] [CrossRef]
- Desmidt, E.; Ghyselbrecht, K.; Monballiu, A.; Verstraete, W.; Meesschaert, B.D. Evaluation and Thermodynamic Calculation of Ureolytic Magnesium Ammonium Phosphate Precipitation from UASB Effluent at Pilot Scale. Water Sci. Technol. 2012, 65, 1954–1962. [Google Scholar] [CrossRef] [PubMed]
- Desmidt, E.; Ghyselbrecht, K.; Monballiu, A.; Rabaey, K.; Verstraete, W.; Meesschaert, B.D. Factors influencing Urease Driven Struvite Precipitation. Sep. Purif. Technol. 2013, 110, 150–157. [Google Scholar] [CrossRef]
- Dai, J.; Tang, W.T.; Zheng, Y.S.; Mackey, H.R.; Chui, H.K.; van Loosdrecht, M.C.; Chen, G.H. An Exploratory Study on Seawater-catalysed Urine Phosphorus Recovery (SUPR). Water Res. 2014, 66, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Dai, J.; Liu, R.; Chen, G. Microbial Ureolysis in the Seawater-catalysed Urine Phosphorus Recovery System: Kinetic Study and Reactor Verification. Water Res. 2015, 87, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Castro, S. Flotación con Agua de mar. In El Agua de Mar en la Minería: Fundamentos y Aplicaciones; Cisternas, L., Moreno, L., Eds.; RIL Editores: Santiago, Chile, 2014; pp. 99–119. ISBN 978-956-01-0081-8. [Google Scholar]
- Castro, S.; Laskowski, J.S. Froth Flotation in Saline Water. KONA Powder Part. J. 2011, 29, 4–15. [Google Scholar] [CrossRef]
- Castro, S. Challenges in Flotation of Cu-Mo Sulfide Ores in Sea Water. In Proceedings of the 1st International Symposium, Water in Mineral Processing; Drelich, J., Ed.; SME: Englewood, IL, USA, 2012; pp. 29–40. [Google Scholar]
- Castro, S.; Lopez-Valdivieso, A.; Laskowski, J.S. Review of the Flotation of Molybdenite. Part I: Surface Properties and Floatability. Int. J. Miner. Process 2016, 148, 48–58. [Google Scholar] [CrossRef]
- Castro, S.; Laskowski, J.S. Depressing Effect of Flocculants on Molybdenite Flotation. Miner. Eng. 2015, 74, 13–19. [Google Scholar] [CrossRef]
- Liang, J.; Deng, A.; Xie, R.; Adin, A. Impact of Seawater Reverse Osmosis (SWRO) Product Remineralization on the Corrosion Rate of Water Distribution Pipeline Materials. Desalination 2013, 311, 54–61. [Google Scholar] [CrossRef]
- Cuzman, O.A.; Rescic, S.; Richter, K.; Wittig, L.; Tiano, P. Sporosarcina pasteurii use in Extreme Alkaline Conditions for Recycling Solid Industrial Wastes. J. Biotechnol. 2015, 214, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Le Corre, K.S.; Valsami-Jones, E.; Hobbs, P.; Parsons, S.A. Phosphorus Recovery from Wastewater Struvite Crystallization: A Review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 433–477. [Google Scholar] [CrossRef] [Green Version]
- Pratt, C.; Parsons, S.A.; Soares, A.; Martin, B.D. Biologically and Chemically mediated Adsorption and Precipitation of Phosphorus from Wastewater. Curr. Opin. Biotechnol. 2012, 23, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Muñoz, M.T.; Rodriguez-Navarro, C.; Martínez-Ruiz, F.; Arias, J.M.; Merroun, M.L.; Rodriguez-Gallego, M. Bacterial Biomineralization: New Insights from Myxococcus-induced Mineral Precipitation. Geol. Soc. Lond. Spec. Publ. 2010, 336, 31–50. [Google Scholar] [CrossRef]
- Smirnov, A.; Suzina, N.; Chudinova, N.; Kulakovskaya, T.; Kulaev, I. Formation of Insoluble Magnesium Phosphates During Growth of the Archaea Halorubrum distributum and Halobacterium salinarium and the Brevibacterium antiquum. FEMS Microbiol. Ecol. 2005, 52, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Van Paassen, L.A.; Daza, C.M.; Staal, M.; Sorokin, D.Y.; van der Zon, W.; van Loosdrecht, M.C.M. Potential Soil Reinforcement by Biological Denitrification. Ecol. Eng. 2010, 36, 168–175. [Google Scholar] [CrossRef]
Bacterial Species | Crystal | Aplication | Reference |
---|---|---|---|
Enterobacter cloacae | Calcite | Heavy metals bioremediation | Kang et al. [56] |
Bacillus sp. | Calcitemagnesium carbonate trihydrate (MgCO3·3H2O) | Biocementation | Cheng et al. [57] |
Sporosarcina ginsengisoli | As(III)–calcite calcite, aragonite and vaterite | As(III) remediation | Achal et al. [58] |
Halomonas sp. | calcite, vaterite and aragonite along with calcite–strontianite (SrCO3) solid | Sr remediation | Achal et al. [59] |
Rhodococcus erythropolis | Halite (NaCl) Monohydrocalcite (CaCO3·H2O) Struvite Anhydrite | Calcium and magnesium precipitation from sea water | Arias et al. [43] |
Strains of Bacillus sphaericus group | rhombohedral calcite, hexagonal vaterite | Hammes et al. [33] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias, D.; Cisternas, L.A.; Rivas, M. Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review. Crystals 2017, 7, 345. https://doi.org/10.3390/cryst7110345
Arias D, Cisternas LA, Rivas M. Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review. Crystals. 2017; 7(11):345. https://doi.org/10.3390/cryst7110345
Chicago/Turabian StyleArias, Dayana, Luis A. Cisternas, and Mariella Rivas. 2017. "Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review" Crystals 7, no. 11: 345. https://doi.org/10.3390/cryst7110345
APA StyleArias, D., Cisternas, L. A., & Rivas, M. (2017). Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review. Crystals, 7(11), 345. https://doi.org/10.3390/cryst7110345