Crystalline and Spherulitic Morphology of Polymers Crystallized in Confined Systems
Abstract
:1. Introduction
2. Crystalline Morphology of Polymers Confined in Ultrathin Films
3. Crystalline Morphology of Polymers Confined in Miscible Blends
4. Crystalline Morphology of Polymer Segments Confined in Block Copolymers
5. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, L.; Chan, C.M.; Yeung, K.L.; Li, J.X.; Ng, K.M.; Lei, Y. Direct observation of growth of lamellae and spherulites of a semicrystalline polymer by AFM. Macromolecules 2001, 34, 316–325. [Google Scholar] [CrossRef]
- Wang, Y.; Chan, C.M.; Ng, K.M.; Li, L. What controls the lamellar orientation at the surface of polymer films during crystallization. Macromolecules 2008, 41, 2548–2553. [Google Scholar] [CrossRef]
- Zhai, X.; Wang, W.; Zhang, G.; He, B. Crystal pattern formation and transitions of PEO monolayers on solid substrates from nonequilibrium to near equilibrium. Macromolecules 2006, 39, 324–329. [Google Scholar] [CrossRef]
- Sakai, Y.; Imai, M.; Kaji, K.; Tsuji, M. Tip-splitting crystal growth observed in crystallization from thin films of poly(ethylene terephthalate). J. Cryst. Growth 1999, 203, 244–254. [Google Scholar] [CrossRef]
- Jeon, K.; Krishnamoorti, R. Morphological behavior of thin linear low-density polyethylene films. Macromolecules 2008, 41, 7131–7140. [Google Scholar] [CrossRef]
- Santana, O.O.; Müller, A.J. Homogeneous nucleation of the dispersed crystallisable component of immiscible polymer blends. Polym. Bull. 1994, 32, 471–477. [Google Scholar] [CrossRef]
- Morales, R.A.; Arnal, M.L.; Müller, A.J. The evaluation of the state of dispersion in immiscible blends where the minor phase exhibits fractionated crystallization. Polym. Bull. 1995, 35, 379–386. [Google Scholar] [CrossRef]
- Arnal, M.L.; Müller, A.J. Fractionated crystallisation of polyethylene and ethylene/olefin copolymers dispersed in immiscible polystyrene matrices. Macromol. Chem. Phys. 1999, 200, 2559–2560. [Google Scholar] [CrossRef]
- Arnal, M.L.; Müller, A.J.; Maiti, P.; Hikosaka, M. Nucleation and crystallization of isotactic poly(propylene) droplets in an immiscible polystyrene matrix. Macromol. Chem. Phys. 2000, 201, 2493–2504. [Google Scholar] [CrossRef]
- Tol, R.; Mathot, V.B.F.; Reynaers, H.; Goderis, B.; Groeninckx, G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro- and nanometer sized PA6 droplets. Part 4: Polymorphous structure and (meta)-stability of PA6 crystals formed in different temperature regions. Polymer 2005, 46, 2966–2977. [Google Scholar] [CrossRef]
- Huang, C.; Jiao, L.; Zeng, J.; Zhang, J.; Yang, K.; Wang, Y. Fractional crystallization and homogeneous nucleation of confined PEG microdomains in PBS-PEG multiblock copolymers. J. Phys. Chem. B 2013, 117, 10665–10676. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhu, Q.; Lu, X.; He, Y.; Wang, Y. From miscible to partially miscible biodegradable double crystalline poly(ethylene succinate)-b-poly(butylene succinate) multiblock copolymers. Polym. Chem. 2012, 3, 399–408. [Google Scholar] [CrossRef]
- Fu, J.; Wei, Y.; Xue, L.; Luan, B.; Pan, C.; Li, B.; Han, Y. Lamella reorientation in thin films of a symmetric poly(l-lactic acid)-block-polystyrene upon crystallization at different temperatures. Polymer 2009, 50, 1588–1595. [Google Scholar] [CrossRef]
- Ho, R.-M.; Lin, F.-H.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Hsiao, B.S.; Sics, I. Crystallization-induced undulated morphology in polystyrene-b-poly(l-lactic acid) block copolymer. Macromolecules 2004, 37, 5985–5994. [Google Scholar] [CrossRef]
- Sanandaji, N.; Oka, A.; Haviland, D.B.; Tholén, E.A.; Hedenqvist, M.S.; Gedde, U.W. Inkjet printing as a possible route to study confined crystal structure. Eur. Polym. J. 2013, 49, 203–208. [Google Scholar] [CrossRef]
- Carvalho, J.L.; Dalnoki-Veress, S.K. Surface nucleation in the crystallisation of polyethylene droplets. Eur. Phys. J. E 2011, 34, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Massa, M.V.; Carvalho, J.L.; Dalnoki-Veress, K. Direct visualisation of homogeneous and heterogeneous crystallisation in an ensemble of confined domains of poly(ethylene oxide). Eur. Phys. J. 2003, 12, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Lodge, T.P.; Hillmyer, M.A. A stepwise “micellization-crystallization” route to oblate ellipsoidal cylindrical and bilayer micelles with polyethylene cores in water. Macromolecules 2012, 45, 9460–9467. [Google Scholar] [CrossRef]
- Schmelz, J.; Karg, M.; Hellweg, T.; Schmalz, H. General pathway toward crystalline-core micelles with tunable morphology and corona segregation. ACS Nano 2012, 5, 9523–9534. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.G.; Hillmyer, M.A. Disklike micelles in water from polyethylene-containing diblock copolymers. Macromolecules 2011, 44, 3021–3028. [Google Scholar] [CrossRef]
- Lee, M.K.; Bang, J.; Shin, K.; Lee, J. Fabrication of water-soluble nanocrystals using amphiphilic block copolymer patterned surfaces. Cryst. Growth Des. 2010, 10, 5187–5192. [Google Scholar] [CrossRef]
- Osichow, A.; Rabe, C.; Vogtt, K.; Narayanan, T.; Harnau, L.; Drechsler, M.; Ballauff, M.; Mecking, S. Ideal polyethylene nanocrystals. J. Am. Chem. Soc. 2013, 135, 5–50. [Google Scholar] [CrossRef] [PubMed]
- Michell, R.M.; Lorenzo, A.T.; Müller, A.J.; Lin, M.C.; Blaszczyk-Lezak, I.; Martín, J.; Mijangos, C. The crystallization of confined polymers and block copolymers infiltrated within alumina nanotube templates. Macromolecules 2012, 45, 1517–1528. [Google Scholar] [CrossRef]
- Suzuki, Y.; Duran, H.; Steinhart, M.; Butt, H.J.; Floudas, G. Homogeneous crystallization and local dynamics of poly(ethylene oxide) (PEO) confined to nanoporous alumina. Soft Matter 2013, 9, 2621–2628. [Google Scholar] [CrossRef]
- Lin, M.C.; Nandan, B.; Chen, H.L. Mediating polymer crystal orientation using nanotemplates from block copolymer microdomainsand anodic aluminium oxide nanochannels. Soft Matter 2012, 8, 7306–7322. [Google Scholar] [CrossRef]
- Martín-Fabiani, I.; García-Gutiérrez, M.C.; Rueda, D.R.; Linares, A.; Hernández, J.J.; Ezquerra, T.A.; Reynolds, M. Crystallization under one-dimensional confinement in alumina nanopores of poly(trimethylene terephthalate) and its composites with single wall carbon nanotubes. ACS Appl. Mater. Interfaces 2013, 5, 5324–5329. [Google Scholar] [CrossRef] [PubMed]
- Michell, R.M.; Blaszczyk-Lezak, I.; Mijangos, C.; Müller, A.J. Confinement induced first order crystallization kinetics for the poly(ethylene oxide) block within a PEO-b-PB diblock copolymer infiltrated within alumina nano-porous template. Macromol. Symp. 2014, 337, 109–115. [Google Scholar] [CrossRef]
- Suzuki, Y.; Duran, H.; Akram, W.; Steinhart, M.; Floudas, G.; Butt, H.J. Multiple nucleation events and local dynamics of poly(ε-caprolactone) (PCL) confined to nanoporous alumina. Soft Matter 2013, 9, 9189–9198. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, G.; Ding, G.; Yang, T.; Müller, A.J.; Wan, D. Enhanced crystallization from the glassy state of poly(l-lactic acid) confined in anodic alumina oxide nanopores. Macromolecules 2015, 48, 2526–2533. [Google Scholar] [CrossRef]
- Kratochvíl, J.; Rotrekl, J.; Kaprálková, L.; Hromádková, J.; Kelnar, I. Epoxy/poly(ε-caprolactone) nanocomposites: Effect of transformations of structure on crystallization. J. Appl. Polym. Sci. 2013, 130, 3197–3204. [Google Scholar] [CrossRef]
- Zhen, W.; Lu, C.; Li, C.; Liang, M. Structure and properties of thermo-plastic saponite/poly(vinyl alcohol) nanocomposites. Appl. Clay Sci. 2012, 57, 64–70. [Google Scholar] [CrossRef]
- Pan, F.; Jia, H.; Cheng, Q.; Jiang, Z. Bio-inspired fabrication of composite membranes with ultrathin polymer-silica nanohybrid skin layer. J. Membr. Sci. 2010, 362, 119–126. [Google Scholar] [CrossRef]
- Yan, S.; Yin, J.; Yang, J.; Chen, X. Structural characteristics and thermal properties of plasticized poly(l-lactide)-silica nanocomposites synthesized by sol-gel method. Mater. Lett. 2007, 61, 2683–2686. [Google Scholar] [CrossRef]
- Carr, J.M.; Langhe, D.S.; Ponting, M.T.; Hiltner, A.; Baer, E. Confined crystallization in polymer nanolayered films: A review. J. Mater. Res. 2012, 27, 1326–1350. [Google Scholar] [CrossRef]
- Michell, R.M.; Blaszczyk-Lezak, I.; Mijangos, C.; Müller, A.J. Confinement effects on polymer crystallization: From droplets to alumina nanopores. Polymer 2013, 54, 4059–4077. [Google Scholar] [CrossRef]
- Zha, L.; Hu, W. Molecular simulations of confined crystallization in the microdomains of diblock copolymer. Prog. Polym. Sci. 2016, 54–55, 232–258. [Google Scholar] [CrossRef]
- Michell, R.M.; Müller, A.J. Confined crystallization of polymeric materials. Prog. Polym. Sci. 2016, 54–55, 183–213. [Google Scholar] [CrossRef]
- Yuryev, Y.; Wood-Adams, P.; Heuzey, M.-C.; Dubois, C.; Brisson, J. Crystallization of polylactide films: An atomic force microscopy study of the effects of temperature and blending. Polymer 2008, 49, 2306–2320. [Google Scholar] [CrossRef]
- Basure, C.; Ivanov, D.A. Evolution of the lamellar structure during crystallization of a semicrystalline amorphous polymer blend: Time-resolved hot-stage SPM study. Phys. Rev. Lett. 2000, 85, 5587–5590. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, E. Polymer crystallization of ultrathin films on solid substrates. Coord. Chem. Rev. 2010, 254, 1011–1037. [Google Scholar] [CrossRef]
- Wang, Y.; Rafailovich, M.; Sokolov, J.; Gersappe, D.; Araki, T.; Zou, Y.; Kilcoyne, A.D.L.; Ade, H.; Marom, G.; Lustiger, A. Substrate effect on the melting temperature of thin polyethylene films. Phys. Rev. Lett. 2006, 96, 28303. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Hu, W.; Reiter, G. Lamellar crystal orientations biased by crystallization kinetics in polymer thin films. Macromolecules 2006, 39, 5159–5164. [Google Scholar] [CrossRef]
- Schönherr, H.; Frank, C.W. Ultrathin films of poly(ethylene oxide)s on oxidized silicon. 1. Spectroscopic characterization of film structure and crystallization kinetics. Macromolecules 2003, 36, 1188–1198. [Google Scholar] [CrossRef]
- Prud’homme, R.E. Crystallization and morphology of ultrathin films of homopolymers and polymer blends. Prog. Polym. Sci. 2016, 44–45, 214–231. [Google Scholar] [CrossRef]
- Brener, E.; Müller-Krumbhaar, H.; Temkin, D. Kinetic phase diagram and scaling relations for stationary diffusional growth. Europhys. Lett. 1992, 17, 535–540. [Google Scholar] [CrossRef]
- Brener, E.; Müller-Krumbhaar, H.; Temkin, D. Structure formation and the morphology diagram of possible structures in two-dimensional diffusional growth. Phys. Rev. E 1996, 54, 2714–2722. [Google Scholar] [CrossRef]
- Brener, E.; Müller-Krumbhaar, H.; Temkin, D.; Abel, T. Morphology diagram of possible structures in diffusional growth. Phys. A 1998, 249, 73–81. [Google Scholar] [CrossRef]
- Taguchi, K.; Miyaji, H.; Izumi, K.; Hoshino, A.; Miyamoto, Y.; Kokawa, R. Crystal growth of isotactic polystyrene in unltrathin films: Films thickness dependence. J. Macromol. Sci. B 2002, 41, 1033–1042. [Google Scholar] [CrossRef]
- Zhu, D.; Shou, X.; Liu, Y.; Chen, E.; Cheng, S.Z. AFM-tip-induced crystallization of poly(ethylene oxide) melt droplets. Acta Polym. Sin. 2006, 4, 553–556. [Google Scholar] [CrossRef]
- Taguchi, K.; Toda, A.; Miyamoto, Y. Crystal growth of isotactic polystyrene in ultrathin films: Thickness and temperature dependence. J. Macromol. Sci. B 2006, 45, 1141–1147. [Google Scholar] [CrossRef]
- Mareau, V.H.; Prud’homme, R.E. Crystallization of ultrathin poly(ε-caprolactone) films in the presence of residual solvent, an in situ atomic force microscopy study. Polymer 2005, 46, 7255–7265. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, H.; Zhang, F.; Du, B.; He, T. Thickness-dependent molecular chain and lamellar crystal orientation in ultrathin poly(di-n-hexylsilane) films. Langmuir 2004, 20, 3271–3277. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ge, S.; Rafailovich, M.; Sokolov, J.; Zou, Y.; Ade, H.; Lüning, J.; Lustiger, A.; Maron, G. Crystallization in the thin and ultrathin films of poly(ethylene-vinyl acetate) and linear low-density polyethylene. Macromolecular 2004, 37, 3319–3327. [Google Scholar] [CrossRef]
- Bartczak, Z.; Argon, A.S.; Cohen, R.E.; Kowalewski, T. The morphology and orientation of polyethylene in films of submicron thickness crystallized in contact with calcite and rubber substrates. Polymer 1999, 40, 2367–2380. [Google Scholar] [CrossRef]
- Zhou, J.J.; Liu, J.G.; Yan, S.K.; Dong, J.Y.; Li, L.; Chan, C.M.; Schultz, J.M. Atomic force microscopy study of the lamellar growth of isotactic polypropylene. Polymer 2005, 46, 4077–4087. [Google Scholar] [CrossRef]
- Jradi, K.; Bistac, S.; Schmitt, M.; Schmatulla, A.; Reiter, G. Enhancing nucleation and controlling crystal orientation by rubbing/scratching the surface of a thin polymer film. Eur. Phys. J. E 2009, 29, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.W.; Ren, X.K.; Yang, S.; Chen, E.Q.; Sun, C.X.; Stroeks, A.; Yang, T.Y. Lamellar orientation of polyamide 6 thin film crystallization on solid substrates. Polymer 2014, 55, 4332–4340. [Google Scholar] [CrossRef]
- Qiao, C.; Zhao, J.; Jiang, S.; Ji, X.; An, L.; Jiang, B. Crystalline morphology evolution in PCL thin films. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 1303–1309. [Google Scholar] [CrossRef]
- Reiter, G.; Sommer, J. Crystallization of adsorbed polymer monolayers. Phys. Rev. Lett. 1998, 80, 3771–3774. [Google Scholar] [CrossRef]
- Wang, M.; Evelyn Meyer, H.B. Branched crystalline patterns formed around poly(ethylene oxide) dots in humidity. Macromol. Rapid Commun. 2002, 23, 853–858. [Google Scholar] [CrossRef]
- Mareau, V.H.; Prud’homme, R.E. In-situ hot stage atomic force microscopy study of poly(ε-caprolactone) crystal growth in ultrathin films. Macromolecules 2005, 38, 398–408. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Li, L.; Chan, C. The effect of substrate on the annealing of poly(butylene succinate) single crystals. Macromol. Rapid Commun. 2007, 28, 2001–2006. [Google Scholar] [CrossRef]
- Taguchi, K.; Miyaji, H.; Izumi, K.; Hoshino, A.; Miyamoto, Y.; Kokawa, R. Growth shape of isotactic polystyrene crystals in thin films. Polymer 2001, 42, 7443–7447. [Google Scholar] [CrossRef]
- Maillard, D.; Prud’homme, R.E. Crystallization of ultrathin films of polylactides: From chain chirality to lamella curvature and twisting. Macromolecules 2008, 41, 1705–1712. [Google Scholar] [CrossRef]
- Maillard, D.; Prud’homme, R.E. Chirality information transfer in polylactides: From main-chain chirality to lamella curvature. Macromolecules 2006, 39, 4272–4275. [Google Scholar] [CrossRef]
- Fujita, M.; Takikawa, Y.; Sakuma, H.; Teramachi, S.; Kikkawa, Y.; Doi, Y. Real-time observations of oriented crystallization of poly(ε-caprolactone) thin film, induced by an AFM tip. Macromol. Chem. Phys. 2007, 208, 1862–1870. [Google Scholar] [CrossRef]
- Kikkawa, Y.; Abe, H.; Iwata, T.; Inoue, Y.; Doi, Y. In situ observation of crystal growth for poly[(S)-lactide] by temperature-controlled atomic force microscopy. Biomacromolecules 2001, 2, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Kikkawa, Y.; Abe, H.; Fujita, M.; Iwata, T.; Inoue, Y.; Doi, Y. Crystal growth in poly(l-lactide) thin film revealed by in situ atomic force microscopy. Macromol. Chem. Phys. 2003, 204, 1822–1831. [Google Scholar] [CrossRef]
- Tol, R.; Mathot, V.B.F.; Groeninckx, G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro- and nanometer sized PA6 droplets. Part 3: Crystallization kinetics and crystallinity of micro- and nanometer sized PA6 droplets crystallizing at high supercoolings. Polymer 2005, 46, 2955–2965. [Google Scholar] [CrossRef]
- Tol, R.; Mathot, V.B.F.; Groeninckx, G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro- and nanometer sized PA6 droplets. Part 1: Uncompatibilized PS/PA6 and PPE/PA6 blends. Polymer 2005, 46, 369–382. [Google Scholar] [CrossRef]
- Tol, R.; Mathot, V.B.F.; Groeninckx, G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro-and nanometer sized PA6 droplets. Part 2: Reactively compatibilized PS/PA6 and (PPE/PS)/PA6 blends. Polymer 2005, 46, 383–396. [Google Scholar] [CrossRef]
- Balsamo, V.; Gouveia, L.M. Interplay of fractionated crystallization and morphology in polypropylene/poly(ε-caprolactone) blends. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 1365–1379. [Google Scholar] [CrossRef]
- Zhong, G.; Wang, K.; Zhang, L.; Li, Z.; Fong, H.; Zhu, L. Nanodroplet formation and exclusive homogenously nucleated crystallization in confined electrospun immiscible polymer blend fibers of polystyrene and poly(ethylene oxide). Polymer 2011, 52, 5397–5402. [Google Scholar] [CrossRef]
- Yi, H.; Wang, X.; Wei, T.; Lin, H.; Zheng, B. Nanoscale-confined crystallization in epoxy resin and polyethylene-block-poly(ethylene oxide) diblock copolymer blends. Colloid Polym. Sci. 2012, 290, 1347–1352. [Google Scholar] [CrossRef]
- Avramova, N. Amorphous poly(ethylene terephthalate)/poly(butylene terephthalate) blends: Miscibility and properties. Polymer 1995, 36, 801–808. [Google Scholar] [CrossRef]
- Avella, M.; Martuscelli, E.; Greco, P. Crystallization behaviour of poly(ethylene oxide) from poly(3-hydroxybutyrate)/poly(ethylene oxide) blends: Phase structuring, morphology and thermal behavior. Polymer 1991, 32, 1647–1653. [Google Scholar] [CrossRef]
- Pan, P.; Zhao, L.; Zhu, B.; He, Y.; Inoue, Y. Fractionated crystallization and self-nucleation behavior of poly(ethylene oxide) in its miscible blends with poly(3-hydroxybutyrate). J. Appl. Polym. Sci. 2010, 117, 3013–3022. [Google Scholar] [CrossRef]
- Penning, J.P.; Manley, R.J., St. Miscible blends of two crystalline polymers. 2. Crystallization kinetics and morphology in blends of poly(vinylidene fluoride) and poly(1,4-butylene adipate). Macromolecules 1996, 29, 84–90. [Google Scholar] [CrossRef]
- Yang, J.; Pan, P.; Hua, L.; Zhu, B.; Dong, T.; Inoue, Y. Polymorphic crystallization and phase transition of poly(butylene adipate) in its miscible crystalline/crystalline blend with poly(vinylidene fluoride). Macromolecules 2010, 43, 8610–8618. [Google Scholar] [CrossRef]
- Yang, J.; Pan, P.; Hua, L.; Feng, X.; Yue, J.; Ge, Y.; Inoue, Y. Effects of crystallization temperature of poly(vinylidene fluoride) on crystal modification and phase transition of poly(butylene adipate) in their blends: A novel approach for polymorphic control. J. Phys. Chem. B 2012, 116, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Yan, C.; Lu, J.; Yang, W. Miscible crystalline/crystalline polymer blends of poly(vinylidene fluoride) and poly(butylene succinate-co-butylene adipate): Spherulitic morphologies and crystallization kinetics. Macromolecules 2007, 40, 5047–5053. [Google Scholar] [CrossRef]
- Chiu, H.; Chen, H.; Lin, J. Crystallization induced microstructure of crystalline/crystalline poly(vinylidenefluoride)/poly(3-hydroxybutyrate) blends probed by small angle X-ray scattering. Polymer 2001, 42, 5749–5754. [Google Scholar] [CrossRef]
- Li, Y.; Kaito, A.; Horiuchi, S. Biaxially oriented lamellar morphology formed by the confined crystallization of poly(1,4-butylene succinate) in the oriented blend with poly(vinylidene fluoride). Macromolecules 2004, 37, 2119–2127. [Google Scholar] [CrossRef]
- Wang, T.; Li, H.; Wang, F.; Yan, S.; Schultz, J.M. Confined growth of poly(butylene succinate) in its miscible blends with poly(vinylidene fluoride): Morphology and growth kinetics. J. Phys. Chem. B 2011, 115, 7814–7822. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, H.; Wang, F.; Schultz, J.M.; Yan, S. Morphologies and deformation behavior of poly(vinylidene fluoride)/poly(butylene succinate) blends with variety of blend ratios and under different preparation conditions. Polym. Chem. 2011, 2, 1688–1698. [Google Scholar] [CrossRef]
- Qiu, Z.; Ikehara, T.; Nishi, T. Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide). Polymer 2003, 44, 2799–2806. [Google Scholar] [CrossRef]
- He, Y.; Zhu, B.; Kai, W.; Inoue, Y. Nanoscale-confined and fractional crystallization of poly(ethylene oxide) in the interlamellar region of poly(butylene succinate). Macromolecules 2004, 37, 3337–3345. [Google Scholar] [CrossRef]
- He, Y.; Zhu, B.; Kai, W.; Inoue, Y. Effects of crystallization condition of poly(butylene succinate) component on the crystallization of poly(ethylene oxide) component in their miscible blends. Macromolecules 2004, 37, 8050–8056. [Google Scholar] [CrossRef]
- Ikehara, T.; Kurihara, H.; Kataoka, T. Effect of poly(butylene succinate) crystals on spherulitic growth of poly(ethylene oxide) in binary blends of the two substances. J. Polym. Sci. Part B: Polym. Phys. 2009, 47, 539–547. [Google Scholar] [CrossRef]
- Pan, P.; Zhao, L.; Yang, Y.; Inoue, Y. Fractional crystallization and phase segregation in binary miscible poly(butylene succinate)/poly(ethylene oxide) crystalline blends: Effect of crystallization temperature. Macromol. Mater. Eng. 2013, 298, 201–209. [Google Scholar] [CrossRef]
- Pan, P.; Zhao, L.; Inoue, Y. Fractional crystallization kinetics of poly(ethylene oxide) in its blends with poly(butylene succinate): Molecular weight effects. Macromol. Mater. Eng. 2013, 298, 919–927. [Google Scholar] [CrossRef]
- He, Z.; Liang, Y.; Wang, P.; Han, C.C. Effect of lower critical solution temperature phase separation on crystallization kinetics and morphology of poly(butylene succinate)/poly(ethylene oxide) blend. Polymer 2013, 54, 2355–2363. [Google Scholar] [CrossRef]
- Wang, H.; Gan, Z.; Schultz, J.M.; Yan, S. A morphological study of poly(butylene succinate)/poly(butylene adipate) blends with different blend ratios and crystallization processes. Polymer 2008, 49, 2342–2353. [Google Scholar] [CrossRef]
- Yang, J.; Pan, P.; Hua, L.; Xie, Y.H.; Dong, T.; Zhu, B.; Inoue, Y.; Feng, X. Fractionated crystallization, polymorphic crystalline structure, and spherulite morphology of poly(butylene adipate) in its miscible blend with poly(butylene succinate). Polymer 2011, 52, 3460–3468. [Google Scholar] [CrossRef]
- Ikehara, T.; Kimura, H.; Qiu, Z. Penetrating spherulitic growth in poly(butylene adipate-co-butylene succinate)/poly(ethylene oxide) blends. Macromolecules 2005, 38, 5104–5108. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, T.; Wang, X.; Guo, P.; Ren, L.; Qiang, T.; Luo, X.; Qiang, X. Effects of crystallization condition of poly(ethylene succinate) on the crystallization of poly(ethylene oxide) in their blends. Polym. Bull. 2012, 69, 955–965. [Google Scholar] [CrossRef]
- Qiu, J.S.; Guan, J.P.; Wang, H.T.; Zhu, S.S.; Cao, X.J.; Ye, Q.L.; Li, Y.J. Enhanced crystallization rate of poly(l-lactic acid) (PLLA) by polyoxymethylene (POM) fragment crystals in the PLLA/POM blends with a small amount of POM. J. Phys. Chem. B 2014, 118, 7167–7176. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.J.; Ye, C.C.; Xie, K.Y.; Shi, X.C.; You, J.C.; Li, Y.J. Morphologies and crystallization behaviors in melt-miscible crystalline/crystalline blends with close melting temperatures but different crystallization kinetics. Macromolecules 2015, 48, 8515–8525. [Google Scholar] [CrossRef]
- Chu, C.; Chen, H.; Hsiao, M.; Chen, J.; Nandan, B. Crystallization in the binary blends of crystalline-amorphous diblock copolymers bearing chemically different crystalline block. Macromolecules 2010, 43, 3376–3382. [Google Scholar] [CrossRef]
- Mayes, A.M.; Russell, T.P.; Deline, V.R.; Satija, S.K.; Majkrzak, C.F. Block copolymer mixtures as revealed by neutron reflectivity. Macromolecules 1994, 27, 7447–7453. [Google Scholar] [CrossRef]
- Okerberg, B.C.; Marand, H.; Douglas, J.F. Dendritic crystallization in thin films of PEO/PMMA blends: A comparison to crystallization in small molecule liquids. Polymer 2008, 49, 579–587. [Google Scholar] [CrossRef]
- Wang, M.; Braun, H.; Meyer, E. Crystalline structures in ultrathin poly(ethylene oxide)/poly(methyl methacrylate) blend films. Polymer 2003, 44, 5015–5021. [Google Scholar] [CrossRef]
- Mamun, A.; Mareau, V.H.; Chen, J.; Prud’homme, R.E. Morphologies of miscible PCL/PVC blends confined in ultrathin films. Polymer 2014, 55, 2179–2187. [Google Scholar] [CrossRef]
- Sun, X.; Tokuda, A.; Oji, Y.; Nakatani, T.; Tsuji, H.; Ozaki, Y.; Yan, S.; Takahashi, I. Effects of molar mass of poly(l-lactide acid) on the crystallization of poly[(R)-3-hydroxybutyrate] in their ultrathin blend films. Macromolecules 2012, 45, 2485–2493. [Google Scholar] [CrossRef]
- Nurkhamidah, S.; Woo, E.M. Phase-separation-induced single-crystal morphology in poly(l-lactic acid) blended with poly(1,4-butylene adipate) at specific composition. J. Phys. Chem. B 2011, 115, 13127–13138. [Google Scholar] [CrossRef] [PubMed]
- Nurkhamidah, S.; Woo, E.M. Phase separation and lamellae assembly below UCST in poly(l-lactic acid)/poly(1,4-butylene adipate) blend induced by crystallization. Macromolecules 2012, 45, 3094–3103. [Google Scholar] [CrossRef]
- Maillard, D.; Prud’homme, R.E. Differences between crystals obtained in PLLA-rich or PDLA-rich stereocomplex mixtures. Macromolecules 2010, 43, 4006–4010. [Google Scholar] [CrossRef]
- Wang, X.; Prud’homme, R.E. Dendritic crystallization of poly(l-lactide)/poly(d-lactide) stereocomplexes in ultrathin films. Macromolecules 2014, 47, 668–676. [Google Scholar] [CrossRef]
- Marubayashi, H.; Nobuoka, T.; Iwamoto, S.; Takemura, A.; Iwata, T. Atomic force microscopy observation of polylactide stereocomplex edge-on crystals in thin films: Effects of molecular weight on lamellar curvature. ACS Macro Lett. 2013, 2, 355–360. [Google Scholar] [CrossRef]
- Tsuji, H. Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications. Macromol. Biosci. 2005, 5, 569–597. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Han, L.; Bao, J.; Xie, Q.; Shan, G.; Bao, Y. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(l-lactic acid)/poly(d-lactic acid) racemic blends: Molecular weight effects. J. Phys. Chem. B 2015, 119, 6462–6470. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; He, C.; An, L.; Chen, X.; Jiang, B. Crystallization and ring-banded spherulite morphology of poly(ethylene oxide)-block-poly(ε-caprolactone) diblock copolymers. Macromol. Chem. Phys. 2004, 205, 2229–2234. [Google Scholar] [CrossRef]
- He, C.; Sun, J.; Deng, C.; Zhao, T.; Deng, M.; Chen, X.; Jing, X. Study of the synthesis, crystallization, and morphology of poly(ethylene glycol)-poly(ε-caprolactone) diblock copolymers. Biomacromolecules 2004, 5, 2042–2047. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Sun, J.; Zhao, T.; Hong, Z.; Zhuang, X.; Chen, X.; Jing, X. Formation of a unique crystal morphology for the poly(ethylene glycol)-poly(ε-caprolactone) diblock copolymers. Biomacromolecules 2006, 7, 252–258. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Sun, J.; Ma, J.; Chen, X.; Jing, X. Composition dependence of the crystallization behavior and morphology of poly(ethylene oxide)-block-poly(ε-caprolactone) diblock copolymers. Biomacromolecules 2006, 7, 3482–3489. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, X.; He, C.; Jing, X. Morphology and structure of single crystals of poly(ethylene glycol)-poly(ε-caprolactone) diblock copolymers. Macromolecules 2006, 39, 3717–3719. [Google Scholar] [CrossRef]
- Sun, J.; Hong, Z.; Yang, L.; Tang, Z.; Chen, X.; Jing, X. Study on crystalline morphology of poly(l-lactide)-poly(ethylene glycol) diblock copolymer. Polymer 2004, 45, 5969–5977. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, T.; Cui, J.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(l-lactide)-poly(ethylene glycol) diblock copolymers: Effect of the poly(l-lactide) block length. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 3215–3226. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, T.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E. Isothermal crystallization behavior of the poly(l-lactide) block in poly(l-lactide)-poly(ethylene glycol) diblock copolymers: Influence of the PEG block as a diluted solvent. Polym. J. 2006, 12, 1251–1257. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, T.; Zhou, Y.; Liu, L.; Li, G.; Zhou, E. Single crystals of the poly(l-lactide) block and the poly(ethylene glycol) block in poly(l-lactide)-poly(ethylene glycol) diblock copolymer. Macromolecules 2007, 40, 2791–2797. [Google Scholar] [CrossRef]
- Huang, S.; Jiang, S.; An, L.; Chen, X. Crystallization and morphology of poly(ethylene oxide-b-lactide) crystalline-crystalline diblock copolymers. J. Polym. Sci. Part B: Polym. Phys. 2008, 46, 1400–1411. [Google Scholar] [CrossRef]
- Yang, J.; Liang, Y.; Luo, J.; Zhao, C.; Han, C.C. Multilength scale studies of the confined crystallization in poly(l-lactide)-block-poly(ethylene glycol) copolymer. Macromolecules 2012, 45, 4254–4261. [Google Scholar] [CrossRef]
- Ho, R.-M.; Hsieh, P.-Y.; Tseng, W.-H.; Lin, C.-C.; Huang, B.-H.; Lotz, B. Crystallization-induced orientation for microstructures of poly(l-lactide)-b-poly(ε-caprolactone) diblock copolymers. Macromolecules 2003, 36, 9085–9092. [Google Scholar] [CrossRef]
- Hamley, I.W.; Parras, P.; Castelletto, V.; Castillo, R.V.; Müller, A.J.; Pollet, E.; Dubois, P.; Martin, C.M. Melt structure and its transformation by sequential crystallization of the two blocks within poly(l-lactide)-block-poly(ε-caprolactone) double crystalline diblock copolymers. Macromol. Chem. Phys. 2006, 207, 941–953. [Google Scholar] [CrossRef]
- Castillo, R.V.; Müller, A.J.; Raquez, J.M.; Dubois, P. Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Macromolecules 2010, 43, 4149–4160. [Google Scholar] [CrossRef]
- Müller, A.J.; Albuerne, J.; Marquez, L.; Raquez, J.; Degée, P.; Dubois, P.; Hobbs, J.; Hamley, I.W. Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Faraday Discuss. 2005, 128, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Albuerne, J.; Márquez, L.; Müller, A.J.; Raquez, J.M.; Degée, P.; Dubois, P.; Castelletto, V.; Hameley, I.W. Nucleation and crystallization in double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Macromolecules 2003, 36, 1633–1644. [Google Scholar] [CrossRef]
- Müller, A.J.; Albuerne, J.; Esteves, L.M.; Márquez, L.; Raquez, J.M.; Degée, P.; Dubols, P.; Collins, S.; Hamley, I.W. Confinement effects on the crystallization kinetics and self-nucleation of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Macromol. Symp. 2004, 215, 369–382. [Google Scholar] [CrossRef]
- Ruokolainen, J.; Mezzenga, R.; Fredrickson, G.H.; Kramer, E.H. Morphology and thermodynamic behavior of syndiotactic polypropylene-poly(ethylene-co-propylene) block polymers prepared by living olefin polymerization. Macromolecules 2005, 38, 851–860. [Google Scholar] [CrossRef]
- Hamley, I.W.; Fairclough, J.P.A.; Terrill, N.J.; Ryan, A.J. Crystallization in oriented semicrystalline diblock copolymers. Macromolecules 1996, 29, 8835–8843. [Google Scholar] [CrossRef]
- Loo, Y.-L.; Register, R.A. Modes of crystallization in block copolymer microdomains: Breakout, templated, and confined. Macromolecules 2002, 35, 2365–2374. [Google Scholar] [CrossRef]
- Loo, Y.-L.; Register, R.A. Polymer crystallization confined in one, two, or three dimensions. Macromolecules 2001, 34, 8968–8977. [Google Scholar] [CrossRef]
- Rangarajan, P.; Haisch, C.F.; Register, R.A.; Adamson, D.H.; Fetters, L.J. Influence of semicrystalline homopolymer addition on the morphology of semicrystalline diblock copolymers. Macromolecules 1997, 30, 494–502. [Google Scholar] [CrossRef]
- Douzinas, K.C.; Cohen, R.E.; Halasa, A.F. Evaluation of domain spacing scaling laws for semicrystalline diblock copolymers. Macromolecules 1991, 24, 4457–4459. [Google Scholar] [CrossRef]
- Cohen, R.E.; Cheng, P.-L.; Douzinas, K.; Kofinas, P.; Berney, C.V. Path-dependent morphologies of a diblock copolymer of polystyrene/hydrogenated polybutadiene. Macromolecules 1990, 23, 324–327. [Google Scholar] [CrossRef]
- Castillo, R.V.; Müller, A.J. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog. Polym. Sci. 2009, 34, 516–560. [Google Scholar] [CrossRef]
- De Rosa, C.; Park, C.; Lotz, B.; Wittmann, J.-C.; Fetters, L.J.; Thomas, E.L. Control of molecular and microdomain orientation in a semicrystalline block copolymer thin film by epitaxy. Macromolecules 2000, 33, 4871–4876. [Google Scholar] [CrossRef]
- De Rosa, C.; Park, C.; Thomas, E.L.; Lotz, B. Microdomain patterns from directional eutectic solidification and epitaxy. Nature 2000, 405, 433–437. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, C.; Di Girolamo, R.; Auriemma, F.; D’Avino, M.; Talarico, G.; Cioce, C.; Scoti, M.; Coates, G.W.; Lotz, B. Oriented microstructures of crystalline-crystalline block copolymers induced by epitaxy and competitive and confined crystallization. Macromolecules 2016, 49, 5576–5586. [Google Scholar] [CrossRef]
- De Rosa, C.; Auriemma, F.; Di Girolamo, R.; Aprea, R.; Thierry, A. Selective gold deposition on a nanostructured block copolymer film crystallized by epitaxy. Nano Res. 2011, 4, 241–248. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Xie, Q.; Bao, Y.; Shan, G.; Pan, P. Crystalline and Spherulitic Morphology of Polymers Crystallized in Confined Systems. Crystals 2017, 7, 147. https://doi.org/10.3390/cryst7050147
Yu C, Xie Q, Bao Y, Shan G, Pan P. Crystalline and Spherulitic Morphology of Polymers Crystallized in Confined Systems. Crystals. 2017; 7(5):147. https://doi.org/10.3390/cryst7050147
Chicago/Turabian StyleYu, Chengtao, Qing Xie, Yongzhong Bao, Guorong Shan, and Pengju Pan. 2017. "Crystalline and Spherulitic Morphology of Polymers Crystallized in Confined Systems" Crystals 7, no. 5: 147. https://doi.org/10.3390/cryst7050147