Effective Pattern Intensity Artifacts Treatment for Electron Diffractive Imaging
Abstract
:1. Introduction
2. Results: Correction of the Electron Diffraction Intensity Artifacts
2.1. Basic Procedures
2.1.1. Multiple Acquisitions
2.1.2. Centering of the Diffraction Pattern
2.2. Parasitic Stripes Removal
2.2.1. Synthetic Data
2.2.2. Examples on Experimental Data
- shifting of the ED pattern to the center of the reference frame (see Section 2.1.2);
- selection and masking of the diffraction peaks to preserve their intensities;
- LR deconvolution procedure with a fixed or variable number of iterations.
2.3. Irregular Background Compensation
- Evaluates the background intensity on the border of the pattern, in an area free from diffracted spots;
- Determines the presence of eventual structures indicating an anomaly in the background and extracts a function describing the structure of these anomalies;
- Applies a correction to compensate either irregularities or intensity spikes in the background.
2.4. Corrupted Detector Areas Correction
- Selection of the background zone to be used as a reference for the restoration;
- Identification of the corrupted dark zone;
- Replacement of each pixel of the corrupted area with pixels randomly chosen from the reference background zone.
2.5. Spikes Removal
3. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Reimer, L. Transmission Electron Microscopy: Physics of Image Formation and Microanalysis; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Cowley, J.M. Electron nanodiffraction. Microsc. Res. Tech. 1999, 46, 75–97. [Google Scholar] [CrossRef]
- Haider, M.; Rose, H.; Uhlemann, S.; Kabius, B.; Urban, K. Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J. Electron. Microsc. 1998, 47, 395–405. [Google Scholar] [CrossRef]
- Hawkes, P.W. Aberration correction past and present. Philos. Trans. R. Soc. A 2009, 367, 3637–3664. [Google Scholar] [CrossRef] [PubMed]
- Scherzer, O.Z. Über einige fehler von elektronenlinsen. Physik 1936, 101, 593–603. [Google Scholar] [CrossRef]
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777. [Google Scholar] [CrossRef] [PubMed]
- Miedema, M.A.O.; van den Bos, A.; Buist, A. Experimental design of the exit wave reconstruction from a transmission electron microscope defocus series. IEEE Trans. Inst. Meas. 1994, 43, 181–186. [Google Scholar] [CrossRef]
- Zuo, J.M.; Vartanyants, I.; Gao, M.; Zhang, R.; Nagahara, L.A. Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 2003, 300, 1419–1421. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Zuo, J.M.; Jiang, B.; Kwon, K.W.; Shim, M. Sub-angström-resolution diffractive imaging of single nanocrystals. Nat. Phys. 2009, 5, 129–133. [Google Scholar] [CrossRef]
- De Caro, L.; Carlino, E.; Caputo, G.; Cozzoli, P.D.; Giannini, C. Electron diffractive imaging of oxygen atoms in nanocrystals. Nat. Nanotechnol. 2010, 5, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. Communication in the presence of noise. Proc. Inst. Radio Eng. 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. AIEE 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Fienup, J.R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. A 1987, 4, 118–123. [Google Scholar] [CrossRef]
- Zuo, J.M.; Zhang, J.; Huang, W.; Ran, K.; Jiang, B. Combining real and reciprocal space information for aberration free coherent electron diffractive imaging. Ultramicroscopy 2011, 111, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y. Practical Electron Microscopy and Database. Available online: http://www.globalsino.com/EM/page3964.html (accessed on 9 June 2017).
- Senninger, D. Analysis of Electron Diffraction Patterns from Carbon Nanotubes with Image Processing to Determine Structural Parameters. Ph.D. Thesis, University of Regensburg, Regensburg, Bavaria, December 2011. [Google Scholar]
- Henderson, R.; Glaeser, R.M. Quantitative analysis of image contrast in electron micrograph of beam sensitive crystals. Ultramicroscopy 1985, 16, 139–150. [Google Scholar] [CrossRef]
- De Caro, L.; Carlino, E.; Vittoria, A.F.; Siliqi, D.; Giannini, C. Keyhole electron diffractive imaging (KEDI). Acta Cryst. A 2012, 68, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Schattschneider, P. Linear and Chiral Dichroism in the Electron Microscope; Pan Stanford Publishing: Singapore, 2012; ISBN 978-981-4267-48-9. [Google Scholar]
- Goshtasby, A.A. 2-D and 3-D Image Registration for Medical, Remote Sensing, and Industrial Applications; Wiley Press: Hoboken, New Jersey, USA, 2005; ISBN 978-0-471-64954-0. [Google Scholar]
- Mollon, B.; Pan, M.; Jia, Y.; Mooney, P.; Sha, T. Development of a fast CCD camera for electron diffraction imaging in conventional TEM. Microsc. Microanal. 2009, 15, 166. [Google Scholar] [CrossRef]
- Tai, Y.W.; Ping, T.; Brow, M.S. Richardson-lucy deblurring for scenes under a projective motion path. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1603–1618. [Google Scholar] [PubMed]
- Richardson, W.H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 1972, 62, 55–59. [Google Scholar] [CrossRef]
- Lucy, L.B. An iterative technique for the rectification of observed distributions. Astron. J. 1974, 79, 745–754. [Google Scholar] [CrossRef]
- Pagot, E.; Fiedler, S.; Cloetens, P.; Bravin, A.; Coan, P.; Fezzaa, K.; Baruchel, J.; Härtwig, J.; von Smitten, K.; Leidenius, M.; et al. Quantitative comparison between two phase contrast techniques: Diffraction enhanced imaging and phase propagation imaging. Phys. Med. Biol. 2005, 50, 709–724. [Google Scholar] [CrossRef] [PubMed]
- De Caro, L.; Giannini, C.; Bellotti, R.; Tangaro, S. A theoretical study on phase-contrast mammography with Thomson-scattering X-ray sources. Med. Phys. 2009, 36, 4644–4653. [Google Scholar] [CrossRef] [PubMed]
- Rose, A. A unified approach to the performance of photographic film, television pickup tubes, and the human eyes. J. Soc. Motion Pict. Eng. 1946, 47, 273–294. [Google Scholar] [CrossRef]
- Pratt, W.K. Region Growing Algorithm is a region-based image process of partitioning of digital image into multiple sets of pixels, the so-called segmentation method. It is classified as a pixel-based image segmentation method since it involves the selection of initial seed points. Region growing examines neighboring pixels of initial seed points and iteratively determines whether the pixel neighbors should be added to the region on the basis of similarity criteria, such as average intensities comparison. In Digital Image Processing, 4th ed.; John Wiley & Sons, Inc.: Los Altos, CA, USA, 2007. [Google Scholar]
- Grubbs, F.E. Procedures for detecting outlying observations in samples. Technometrics 1969, 11, 1–21. [Google Scholar] [CrossRef]
- Zou, X.; Hovmoeller, S.; Oleynikov, P. Electron Crystallography: Electron Microscopy and Electron Diffraction, 2nd ed.; International Union of Crystallography, Oxford Science Publications, Oxford University Press: New York, NY, USA, 2012; ISBN 978-0-19-958020-0. [Google Scholar]
- De Caro, L.; Scattarella, F.; Carlino, E. Determination of the projected atomic potential by deconvolution of the auto-correlation function of TEM electron nano-diffraction patterns. Crystals 2016, 6, 141–160. [Google Scholar] [CrossRef]
- Colombo, A.; Galli, D.E.; De Caro, L.; Scattarella, F.; Carlino, E. Facing the phase problem in coherent diffractive imaging via memetic algorithms. Sci. Rep. 2017, 7, 42236–42248. [Google Scholar] [CrossRef] [PubMed]
- De Caro, L.; Altamura, D.; Vittoria, F.A.; Carbone, G.; Qiao, F.; Manna, L.; Giannini, C. A superbright X-ray laboratory microsource empowered by a novel restoration algorithm. J. Appl. Cryst. 2012, 45, 1228–1235. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scattarella, F.; De Caro, L.; Siliqi, D.; Carlino, E. Effective Pattern Intensity Artifacts Treatment for Electron Diffractive Imaging. Crystals 2017, 7, 186. https://doi.org/10.3390/cryst7070186
Scattarella F, De Caro L, Siliqi D, Carlino E. Effective Pattern Intensity Artifacts Treatment for Electron Diffractive Imaging. Crystals. 2017; 7(7):186. https://doi.org/10.3390/cryst7070186
Chicago/Turabian StyleScattarella, Francesco, Liberato De Caro, Dritan Siliqi, and Elvio Carlino. 2017. "Effective Pattern Intensity Artifacts Treatment for Electron Diffractive Imaging" Crystals 7, no. 7: 186. https://doi.org/10.3390/cryst7070186
APA StyleScattarella, F., De Caro, L., Siliqi, D., & Carlino, E. (2017). Effective Pattern Intensity Artifacts Treatment for Electron Diffractive Imaging. Crystals, 7(7), 186. https://doi.org/10.3390/cryst7070186